Do you want to publish a course? Click here

Mitigation of Parametric Instability

59   0   0.0 ( 0 )
 Added by Margherita Turconi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A key action for enhancing the sensitivity of gravitational wave (GW) detectors based on laser interferometry is to increase the laser power. However, in such a high-power regime, a nonlinear optomechanical phenomenon called parametric instability (PI) leads to the amplification of the mirrors vibrational modes preventing the detector functioning. Thus this phenomenon limits the detectors maximum power and so its performances. Our group has started an experimental research program aiming at realizing a exible and active mitigation system, based on the radiation pressure applied by an auxiliary laser. A summary on the PI mitigation techniques will be presented, we will explain the working principle of the system that we are implementing and report about the first experimental results.



rate research

Read More

348 - Jue Zhang , Chunnong Zhao , Li Ju 2016
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector based on cooled silicon test masses. It is shown that there would be about 2 unstable modes per test mass, with the highest parametric gain of ~76. The importance of developing suitable instability suppression schemes is emphasized.
Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.
120 - Chunnong Zhao , Li Ju , Qi Fang 2015
Three mode parametric instability has been predicted in Advanced gravitational wave detectors. Here we present the first observation of this phenomenon in a large scale suspended optical cavity designed to be comparable to those of advanced gravitational wave detectors. Our results show that previous modelling assumptions that transverse optical modes are stable in frequency except for frequency drifts on a thermal deformation time scale is unlikely to be valid for suspended mass optical cavities. We demonstrate that mirror figure errors cause a dependence of transverse mode offset frequency on spot position. Combined with low frequency residual motion of suspended mirrors, this leads to transverse mode frequency modulation which suppresses the effective parametric gain. We show that this gain suppression mechanism can be enhanced by laser spot dithering or fast thermal modulation. Using Advanced LIGO test mass data and thermal modelling we show that gain suppression factors of 10-20 could be achieved for individual modes, sufficient to greatly ameliorate the parametric instability problem.
Perturbative quantities, such as the growth rate ($f$) and index ($gamma$), are powerful tools to distinguish different dark energy models or modified gravity theories even if they produce the same cosmic expansion history. In this work, without any assumption about the dynamics of the Universe, we apply a non-parametric method to current measurements of the expansion rate $H(z)$ from cosmic chronometers and high-$z$ quasar data and reconstruct the growth factor and rate of linearised density perturbations in the non-relativistic matter component. Assuming realistic values for the matter density parameter $Omega_{m0}$, as provided by current CMB experiments, we also reconstruct the evolution of the growth index $gamma$ with redshift. We show that the reconstruction of current $H(z)$ data constrains the growth index to $gamma=0.56 pm 0.12$ (2$sigma$) at $z = 0.09$, which is in full agreement with the prediction of the $Lambda$CDM model and some of its extensions.
229 - P. P. Avelino 2020
We perform a detailed comparison between a recently proposed parameter-free velocity-dependent one-scale model and the standard parametric model for the cosmological evolution of domain wall networks. We find that the latter overestimates the damping of the wall motion due to the Hubble expansion and neglects the direct impact of wall decay on the evolution of the root-mean-square velocity of the network. We show that these effects are significant but may be absorbed into a redefinition of the momentum parameter. We also discuss the implications of these findings for cosmic strings. We compute the energy loss and momentum parameters of the standard parametric model for cosmological domain wall evolution using our non-parametric velocity-dependent one-scale model in the context of cosmological models having a power law evolution of the scale factor $a$ with the cosmic time $t$ ($a propto t^lambda$, $0 < lambda < 1$), and compare with the results obtained from numerical field theory simulations. We further provide simple linear functions which roughly approximate the dependence of the energy loss and momentum parameters on $lambda$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا