Do you want to publish a course? Click here

Refresh Triggered Computation: Improving the Energy Efficiency of Convolutional Neural Network Accelerators

313   0   0.0 ( 0 )
 Added by Hasan Hassan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

To employ a Convolutional Neural Network (CNN) in an energy-constrained embedded system, it is critical for the CNN implementation to be highly energy efficient. Many recent studies propose CNN accelerator architectures with custom computation units that try to improve energy-efficiency and performance of CNNs by minimizing data transfers from DRAM-based main memory. However, in these architectures, DRAM is still responsible for half of the overall energy consumption of the system, on average. A key factor of the high energy consumption of DRAM is the refresh overhead, which is estimated to consume 40% of the total DRAM energy. In this paper, we propose a new mechanism, Refresh Triggered Computation (RTC), that exploits the memory access patterns of CNN applications to reduce the number of refresh operations. We propose three RTC designs (min-RTC, mid-RTC, and full-RTC), each of which requires a different level of aggressiveness in terms of customization to the DRAM subsystem. All of our designs have small overhead. Even the most aggressive RTC design (i.e., full-RTC) imposes an area overhead of only 0.18% in a 16 Gb DRAM chip and can have less overhead for denser chips. Our experimental evaluation on six well-known CNNs show that RTC reduces average DRAM energy consumption by 24.4% and 61.3%, for the least aggressive and the most aggressive RTC implementations, respectively. Besides CNNs, we also evaluate our RTC mechanism on three workloads from other domains. We show that RTC saves 31.9% and 16.9% DRAM energy for Face Recognition and Bayesian Confidence Propagation Neural Network (BCPNN), respectively. We believe RTC can be applied to other applications whose memory access patterns remain predictable for a sufficiently long time.



rate research

Read More

Specialized accelerators have recently garnered attention as a method to reduce the power consumption of neural network inference. A promising category of accelerators utilizes nonvolatile memory arrays to both store weights and perform $textit{in situ}$ analog computation inside the array. While prior work has explored the design space of analog accelerators to optimize performance and energy efficiency, there is seldom a rigorous evaluation of the accuracy of these accelerators. This work shows how architectural design decisions, particularly in mapping neural network parameters to analog memory cells, influence inference accuracy. When evaluated using ResNet50 on ImageNet, the resilience of the system to analog non-idealities - cell programming errors, analog-to-digital converter resolution, and array parasitic resistances - all improve when analog quantities in the hardware are made proportional to the weights in the network. Moreover, contrary to the assumptions of prior work, nearly equivalent resilience to cell imprecision can be achieved by fully storing weights as analog quantities, rather than spreading weight bits across multiple devices, often referred to as bit slicing. By exploiting proportionality, analog system designers have the freedom to match the precision of the hardware to the needs of the algorithm, rather than attempting to guarantee the same level of precision in the intermediate results as an equivalent digital accelerator. This ultimately results in an analog accelerator that is more accurate, more robust to analog errors, and more energy-efficient.
176 - Hang Lu , Xin Wei , Ning Lin 2018
Inference efficiency is the predominant consideration in designing deep learning accelerators. Previous work mainly focuses on skipping zero values to deal with remarkable ineffectual computation, while zero bits in non-zero values, as another major source of ineffectual computation, is often ignored. The reason lies on the difficulty of extracting essential bits during operating multiply-and-accumulate (MAC) in the processing element. Based on the fact that zero bits occupy as high as 68.9% fraction in the overall weights of modern deep convolutional neural network models, this paper firstly proposes a weight kneading technique that could eliminate ineffectual computation caused by either zero value weights or zero bits in non-zero weights, simultaneously. Besides, a split-and-accumulate (SAC) computing pattern in replacement of conventional MAC, as well as the corresponding hardware accelerator design called Tetris are proposed to support weight kneading at the hardware level. Experimental results prove that Tetris could speed up inference up to 1.50x, and improve power efficiency up to 5.33x compared with the state-of-the-art baselines.
252 - K. K. Chang , D. Lee , Z. Chishti 2018
This article summarizes the idea of refresh-access parallelism, which was published in HPCA 2014, and examines the works significance and future potential. The overarching objective of our HPCA 2014 paper is to reduce the significant negative performance impact of DRAM refresh with intelligent memory controller mechanisms. To mitigate the negative performance impact of DRAM refresh, our HPCA 2014 paper proposes two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of state-of-the-art per-bank refresh mechanism by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, as it is done today, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP proactively schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Our extensive evaluations on a wide variety of workloads and systems show that our mechanisms improve system performance (and energy efficiency) compared to three state-of-the-art refresh policies, and their performance bene ts increase as DRAM density increases.
The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies including emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. The tutorial is augmented with case studies of the vast literature on neural network and neuromorphic hardware as applied to the healthcare domain. We benchmark various hardware platforms by performing a sensor fusion signal processing task combining electromyography (EMG) signals with computer vision. Comparisons are made between dedicated neuromorphic processors and embedded AI accelerators in terms of inference latency and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that various accelerators and neuromorphic processors introduce to healthcare and biomedical domains.
111 - Xinheng Liu , Yao Chen , Cong Hao 2021
The combination of Winograds algorithm and systolic array architecture has demonstrated the capability of improving DSP efficiency in accelerating convolutional neural networks (CNNs) on FPGA platforms. However, handling arbitrary convolution kernel sizes in FPGA-based Winograd processing elements and supporting efficient data access remain underexplored. In this work, we are the first to propose an optimized Winograd processing element (WinoPE), which can naturally support multiple convolution kernel sizes with the same amount of computing resources and maintains high runtime DSP efficiency. Using the proposed WinoPE, we construct a highly efficient systolic array accelerator, termed WinoCNN. We also propose a dedicated memory subsystem to optimize the data access. Based on the accelerator architecture, we build accurate resource and performance modeling to explore optimal accelerator configurations under different resource constraints. We implement our proposed accelerator on multiple FPGAs, which outperforms the state-of-the-art designs in terms of both throughput and DSP efficiency. Our implementation achieves DSP efficiency up to 1.33 GOPS/DSP and throughput up to 3.1 TOPS with the Xilinx ZCU102 FPGA. These are 29.1% and 20.0% better than the best solutions reported previously, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا