Do you want to publish a course? Click here

Quantum sensing with a single-qubit pseudo-Hermitian system

55   0   0.0 ( 0 )
 Added by Jianming Cai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum sensing exploits fundamental features of quantum system to achieve highly efficient measurement of physical quantities. Here, we propose a strategy to realize a single-qubit pseudo-Hermitian sensor from a dilated two-qubit Hermitian system. The pseudo-Hermitian sensor exhibits divergent susceptibility in dynamical evolution that does not necessarily involve exceptional point. We demonstrate its potential advantages to overcome noises that cannot be averaged out by repetitive measurements. The proposal is feasible with the state-of-art experimental capability in a variety of qubit systems, and represents a step towards the application of non-Hermitian physics in quantum sensing.



rate research

Read More

Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies: The effort of quantum tomography---the characterization of processes and states within a quantum device---scales unfavorably to the point that state-of-the-art systems can no longer be treated. Quantum compressed sensing mitigates this problem by reconstructing the state from an incomplete set of observables. In this work, we present an experimental implementation of compressed tomography of a seven qubit system---the largest-scale realization to date---and we introduce new numerical methods in order to scale the reconstruction to this dimension. Originally, compressed sensing has been advocated for density matrices with few non-zero eigenvalues. Here, we argue that the low-rank estimates provided by compressed sensing can be appropriate even in the general case. The reason is that statistical noise often allows only for the leading eigenvectors to be reliably reconstructed: We find that the remaining eigenvectors behave in a way consistent with a random matrix model that carries no information about the true state. We report a reconstruction of quantum states from a topological color code of seven qubits, prepared in a trapped ion architecture, based on tomographically incomplete data involving 127 Pauli basis measurement settings only, repeated 100 times each.
178 - S. Salimi , A. Sorouri 2009
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnon population in a magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a superconducting qubit allows the detection of magnons using Ramsey interferometry with a sensitivity on the order of $10^{-3}$ $text{magnons}/sqrt{text{Hz}}$. The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
The emergence of parity-time ($mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin noises. Here we construct a quantum pseudo-anti-$% mathcal{PT}$ (pseudo-$mathcal{APT}$) symmetry in a two-mode bosonic system without involving Langevin noises. We show that the pseudo-$mathcal{APT}$ phase transition across the exceptional point yields a transition between different types of quantum squeezing behaviors, textit{i.e.}, the squeezing factor increases exponentially (oscillates periodically) with time in the pseudo-$mathcal{APT}$ symmetric (broken) region. Such dramatic changes of squeezing factors and associated quantum states near the exceptional point are utilized for ultra-precision quantum sensing with divergent sensitivity. These exotic quantum phenomena and sensing applications induced by quantum pseudo-$mathcal{APT}$ symmetry can be experimentally observed in two physical systems: spontaneous wave mixing nonlinear optics and atomic Bose-Einstein condensates.
In this work, a classical-quantum correspondence for two-level pseudo-Hermitian systems is proposed and analyzed. We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian if there is a suitable canonical transformation that links it to a real field. We construct a covariant quantization scheme which maps canonically related pseudoclassical theories to unitarily equivalent quantum realizations, such that there is a unique metric-inducing isometry between the distinct Hilbert spaces. In this setting, the pseudo-Hermiticity condition for the operators induces an involution which guarantees the reality of the corresponding symbols, even for the complex field case. We assign a physical meaning for the dynamics in the presence of a complex field by constructing a classical correspondence. As an application of our theoretical framework, we propose a damped version of the Rabi problem and determine the configuration of the parameters of the setup for which damping is completely suppressed. The experimental viability of the proposal is studied within a specific context. We suggest that the main theoretical results developed in the present work could be experimentally verified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا