Hall Viscosity of Composite Fermions


Abstract in English

Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.

Download