No Arabic abstract
Surgical robots have been introduced to operating rooms over the past few decades due to their high sensitivity, small size, and remote controllability. The cable-driven nature of many surgical robots allows the systems to be dexterous and lightweight, with diameters as low as 5mm. However, due to the slack and stretch of the cables and the backlash of the gears, inevitable uncertainties are brought into the kinematics calculation. Since the reported end effector position of surgical robots like RAVEN-II is directly calculated using the motor encoder measurements and forward kinematics, it may contain relatively large error up to 10mm, whereas semi-autonomous functions being introduced into abdominal surgeries require position inaccuracy of at most 1mm. To resolve the problem, a cost-effective, real-time and data-driven pipeline for robot end effector position precision estimation is proposed and tested on RAVEN-II. Analysis shows an improved end effector position error of around 1mm RMS traversing through the entire robot workspace without high-resolution motion tracker.
The Raven I and the Raven II surgical robots, as open research platforms, have been serving the robotic surgery research community for ten years. The paper 1) briefly presents the Raven I and the Raven II robots, 2) reviews the recent publications that are built upon the Raven robots, aim to be applied to the Raven robots, or are directly compared with the Raven robots, and 3) uses the Raven robots as a case study to discuss the popular research problems in the research community and the trend of robotic surgery study. Instead of being a thorough literature review, this work only reviews the works formally published in the past three years and uses these recent publications to analyze the research interests, the popular open research problems, and opportunities in the topic of robotic surgery.
In Robot-Assisted Minimally Invasive Surgery (RAMIS), a camera assistant is normally required to control the position and zooming ratio of the laparoscope, following the surgeons instructions. However, moving the laparoscope frequently may lead to unstable and suboptimal views, while the adjustment of zooming ratio may interrupt the workflow of the surgical operation. To this end, we propose a multi-scale Generative Adversarial Network (GAN)-based video super-resolution method to construct a framework for automatic zooming ratio adjustment. It can provide automatic real-time zooming for high-quality visualization of the Region Of Interest (ROI) during the surgical operation. In the pipeline of the framework, the Kernel Correlation Filter (KCF) tracker is used for tracking the tips of the surgical tools, while the Semi-Global Block Matching (SGBM) based depth estimation and Recurrent Neural Network (RNN)-based context-awareness are developed to determine the upscaling ratio for zooming. The framework is validated with the JIGSAW dataset and Hamlyn Centre Laparoscopic/Endoscopic Video Datasets, with results demonstrating its practicability.
We present an approach for safe and object-independent human-to-robot handovers using real time robotic vision and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.
This paper describes a novel approach in human robot interaction driven by ergonomics. With a clear focus on optimising ergonomics, the approach proposed here continuously observes a human users posture and by invoking appropriate cooperative robot movements, the users posture is, whenever required, brought back to an ergonomic optimum. Effectively, the new protocol optimises the human-robot relative position and orientation as a function of human ergonomics. An RGB-D camera is used to calculate and monitor human joint angles in real-time and to determine the current ergonomics state. A total of 6 main causes of low ergonomic states are identified, leading to 6 universal robot responses to allow the human to return to an optimal ergonomics state. The algorithmic framework identifies these 6 causes and controls the cooperating robot to always adapt the environment (e.g. change the pose of the workpiece) in a way that is ergonomically most comfortable for the interacting user. Hence, human-robot interaction is continuously re-evaluated optimizing ergonomics states. The approach is validated through an experimental study, based on established ergonomic methods and their adaptation for real-time application. The study confirms improved ergonomics using the new approach.
The core problem of visual multi-robot simultaneous localization and mapping (MR-SLAM) is how to efficiently and accurately perform multi-robot global localization (MR-GL). The difficulties are two-fold. The first is the difficulty of global localization for significant viewpoint difference. Appearance-based localization methods tend to fail under large viewpoint changes. Recently, semantic graphs have been utilized to overcome the viewpoint variation problem. However, the methods are highly time-consuming, especially in large-scale environments. This leads to the second difficulty, which is how to perform real-time global localization. In this paper, we propose a semantic histogram-based graph matching method that is robust to viewpoint variation and can achieve real-time global localization. Based on that, we develop a system that can accurately and efficiently perform MR-GL for both homogeneous and heterogeneous robots. The experimental results show that our approach is about 30 times faster than Random Walk based semantic descriptors. Moreover, it achieves an accuracy of 95% for global localization, while the accuracy of the state-of-the-art method is 85%.