No Arabic abstract
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The universal behavior can be described by the Majorana fermion field theory in $1+1$ dimensions, with the mass proportional to the deviation from the critical point. Although the field theory appears to be symmetric with respect to the inversion of the mass (Kramers-Wannier duality), the actual gap is asymmetric, reflecting the spontaneous symmetry breaking in the ordered phase which leads to the two-fold ground-state degeneracy in the thermodynamic limit. The asymptotic ground-state degeneracy in the ordered phase is realized by (i) formation of a bound state at the defect (except for the periodic/antiperiodic boundary condition) and (ii) effective reversal of the fermion number parity in one of the sectors (except for the open boundary condition), resulting in a rather nontrivial crossover ``phase diagram in the space of the boundary condition (defect strength) and mass.
The critical point of a topological phase transition is described by a conformal field theory, where finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling away from criticality and find a scaling function, which discriminates between phases with different topological indexes. This function appears to be universal for all five Altland-Zirnbauer symmetry classes with non-trivial topology in one spatial dimension. We obtain an analytic form of the scaling function and compare it with numerical results.
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain and D is the dimension of the MPS matrices. In the first regime MPS can be used to perform finite size scaling (FSS). In the complementary regime the MPS simulations show instead the clear signature of finite entanglement scaling (FES). In the thermodynamic limit (or large N limit), only MPS in the FSS regime maintain a finite overlap with the exact ground state. This observation has implications on how to correctly perform FSS with MPS, as well as on the performance of recent MPS algorithms for systems with PBC. It also gives clear evidence that critical models can actually be simulated very well with MPS by using the right scaling relations; in the appendix, we give an alternative derivation of the result of Pollmann et al. [Phys. Rev. Lett. 102, 255701 (2009)] relating the bond dimension of the MPS to an effective correlation length.
Energy eigenvalues and order parameters are calculated by exact diagonalization for the transverse Ising model on square lattices of up to 6x6 sites. Finite-size scaling is used to estimate the critical parameters of the model, confirming universality with the three-dimensional classical Ising model. Critical amplitudes are also estimated for both the energy gap and the ground-state energy.
We consider a finite size scaling function across a topological phase transition in 1D models. For models of non-interacting fermions it was shown to be universal for all topological symmetry classes and markedly asymmetric between trivial and topological sides of the transition (Gulden et al 2016). Here we verify its universality for the topological transition between dimerized and Haldane phases in bilinear-biquadratic spin-1 chain. To this end we perform high-accuracy variational matrix product state simulations. We show that the scaling function, expressed in terms of $L/xi$, where $L$ is the chain length and $xi$ is the correlation length, coincides with that of three species of non-interacting massive Majorana fermions. The latter is known to be a proper description of the conformal critical theory with central charge $c=3/2$. We have shown that it still holds away from the conformal point, including the finite size corrections. We have also observed peculiar differences between even and odd size chains, which may be fully accounted for by residual interactions of the edge states.
A quantum tricritical point is shown to exists in coupled time-reversal symmetry (TRS) broken Majorana chains. The tricriticality separates topologically ordered, symmetry protected topological (SPT), and trivial phases of the system. Here we demonstrate that the breaking of the TRS manifests itself in an emergence of a new dimensionless scale, $g = alpha(xi) B sqrt{N}$, where $N$ is the system size, $B$ is a generic TRS breaking field, and $alpha(xi)$, with $alpha(0)equiv 1$, is a model-dependent function of the localization length, $xi$, of boundary Majorana zero modes at the tricriticality. This scale determines the scaling of the finite size corrections around the tricriticality, which are shown to be {it universal}, and independent of the nature of the breaking of the TRS. We show that the single variable scaling function, $f(w)$, $wpropto m N$, where $m$ is the excitation gap, that defines finite-size corrections to the ground state energy of the system around topological phase transition at $B=0$, becomes double-scaling, $f=f(w,g)$, at finite $B$. We realize TRS breaking through three different methods with completely different lattice details and find the same universal behavior of $f(w,g)$. In the critical regime, $m=0$, the function $f(0,g)$ is nonmonotonic, and reproduces the Ising conformal field theory scaling only in limits $g=0$ and $grightarrow infty$. The obtained result sets a scale of $N gg 1/(alpha B)^2$ for the system to reach the thermodynamic limit in the presence of the TRS breaking. We derive the effective low-energy theory describing the tricriticality and analytically find the asymptotic behavior of the finite-size scaling function. Our results show that the boundary entropy around the tricriticality is also a universal function of $g$ at $m=0$.