Do you want to publish a course? Click here

Weakly Distinguishing Graph Polynomials on Addable Properties

76   0   0.0 ( 0 )
 Added by Johann Makowsky
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A graph polynomial $P$ is weakly distinguishing if for almost all finite graphs $G$ there is a finite graph $H$ that is not isomorphic to $G$ with $P(G)=P(H)$. It is weakly distinguishing on a graph property $mathcal{C}$ if for almost all finite graphs $Ginmathcal{C}$ there is $H in mathcal{C}$ that is not isomorphic to $G$ with $P(G)=P(H)$. We give sufficient conditions on a graph property $mathcal{C}$ for the characteristic, clique, independence, matching, and domination and $xi$ polynomials, as well as the Tutte polynomial and its specialisations, to be weakly distinguishing on $mathcal{C}$. One such condition is to be addable and small in the sense of C. McDiarmid, A. Steger and D. Welsh (2005). Another one is to be of genus at most $k$.



rate research

Read More

97 - Zhicong Lin , Jun Ma 2021
By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma-Mansour-Wang-Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin-Ma-Ma-Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of even-degree nodes on odd levels and odd-degree nodes on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial $gamma$-positivity of the multiset Schett polynomials, a result implies both the symmetry and the unimodality of these polynomials.
Graph polynomials are deemed useful if they give rise to algebraic characterizations of various graph properties, and their evaluations encode many other graph invariants. Algebraic: The complete graphs $K_n$ and the complete bipartite graphs $K_{n,n}$ can be characterized as those graphs whose matching polynomials satisfy a certain recurrence relations and are related to the Hermite and Laguerre polynomials. An encoded graph invariant: The absolute value of the chromatic polynomial $chi(G,X)$ of a graph $G$ evaluated at $-1$ counts the number of acyclic orientations of $G$. In this paper we prove a general theorem on graph families which are characterized by families of polynomials satisfying linear recurrence relations. This gives infinitely many instances similar to the characterization of $K_{n,n}$. We also show where to use, instead of the Hermite and Laguerre polynomials, linear recurrence relations where the coefficients do not depend on $n$. Finally, we discuss the distinctive power of graph polynomials in specific form.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various products, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
134 - Benjamin Moore 2017
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integral for which Browns techniques will succeed. Reducibility can be abstracted away from the Feynman integral to just being a condition on two polynomials, the first and second Symanzik polynomials. These polynomials can be defined from graphs, and thus reducibility is a property of graphs. We prove that for a fixed number of external momenta and no masses, reducibility is graph minor closed, correcting the previously claimed proofs of this fact. A computational study of reducibility was undertaken by Bogner and L{u}ders who found that for graphs with $4$-on-shell momenta and no masses, $K_{4}$ with momenta on each vertex is a forbidden minor. We add to this and find that when we restrict to graphs with four on-shell external momenta the following graphs are forbidden minors: $K_{4}$ with momenta on each vertex, $W_{4}$ with external momenta on the rim vertices, $K_{2,4}$ with external momenta on the large side of the bipartition, and one other graph. We do not expect that these minors characterize reducibility, so instead we give structural characterizations of the graphs not containing subsets of these minors. We characterize graphs not containing a rooted $K_{4}$ or rooted $W_{4}$ minor, graphs not containing rooted $K_{4}$ or rooted $W_{4}$ or rooted $K_{2,4}$ minors, and also a characterization of graphs not containing all of the known forbidden minors. Some comments are made on graphs not containing $K_{3,4}$, $K_{6}$ or a graph related to Wagners graph as a minor.
A k-valuation is a special type of edge k-colouring of a medial graph. Various graph polynomials, such as the Tutte, Penrose, Bollobas-Riordan, and transition polynomials, admit combinatorial interpretations and evaluations as weighted counts of k-valuations. In this paper, we consider a multivariate generating function of k-valuations. We show that this is a polynomial in k and hence defines a graph polynomial. We then show that the resulting polynomial has several desirable properties, including a recursive deletion-contraction-type definition, and specialises to the graph polynomials mentioned above. It also offers an alternative extension of the Penrose polynomial from plane graphs to graphs in other surfaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا