Virtual Optical Pulling Force


Abstract in English

The tremendous progress in light scattering engineering made it feasible to develop optical tweezers allowing capture, hold, and controllable displacement of submicronsize particles and biological structures. However, the momentum conservation law imposes a fundamental restriction on the optical pressure to be repulsive in paraxial fields. Although different approaches to get around this restriction have been proposed, they are rather sophisticated and rely on either wavefront engineering or utilize active media. Herein, we revisit the issue of optical forces by their analytic continuation to the complex frequency plane and considering their behavior in transient. We show that the exponential excitation at the complex frequency offers an intriguing ability to achieve a pulling force for a passive resonator of any shape and composition even in the paraxial approximation, the remarkable effect which is not reduced to the Fourier transform. The approach is linked to the virtual gain effect when an appropriate transient decay of the excitation signal makes it weaker than the outgoing signal that carries away greater energy and momentum flux density. The approach is implemented for the Fabry-Perot cavity and a high refractive index dielectric nanoparticle, a fruitful platform for intracellular spectroscopy and lab-on-a-chip technologies where the proposed technique may found unprecedented capabilities.

Download