Do you want to publish a course? Click here

Solving A Class of Mean-Field LQG Problems

115   0   0.0 ( 0 )
 Added by Qingshuo Song
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this work, we study a class of mean-field linear quadratic Gaussian (LQG) problems. Under suitable conditions, explicit solutions of the distribution-dependent optimal control problems are obtained. Riccati systems are derived by directly solving the associated master equations. Some extensions on controls with partial observations are also considered.



rate research

Read More

We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal control. We propose an $N$-particles Markovian optimal control problem approximating the McKean-Vlasov one and we prove the convergence in relative entropy, total variation and Wasserstein distance of the law of the former to the law of the latter when $N$ goes to infinity. Some McKean-Vlasov optimal control problems with singular cost function and the relation of these problems with the mathematical theory of Bose-Einstein condensation is also established.
196 - Ziyu Huang , Shanjian Tang 2021
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-backward PDEs. The backward one is the Hamilton-Jacobi-Bellman equation while the forward one is the Fokker-Planck equation. Our main result is to show the existence of classical solutions of the forward-backward PDEs in the class $H^{1+frac{1}{4},2+frac{1}{2}}([0,T]timesmathbb{R}^n)$ by use of the Schauder fixed point theorem. Then, we use the solution to give the optimal strategy of the mean field stochastic control problem. Finally, we give an example to illustrate the role of our main result.
We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme that produces an optimal control in terms of a Skorokhod reflection at a (state-dependent) surface that splits the state space into action and inaction regions. We then show that a solution of the MFG of capacity expansion induces approximate Nash equilibria for the $N$-player games with approximation error $varepsilon$ going to zero as $N$ tends to infinity. Our analysis relies entirely on probabilistic methods and extends the well-known connection between singular stochastic control and optimal stopping to a mean-field framework.
We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly derive the optimal action distributions for individual agents in the limiting MFG. We demonstrate that the optimal set of action distributions yields an $epsilon$-Nash equilibrium for the finite-population entropy-regularized MFG. Furthermore, we compare the resulting solutions with those of classical LQG MFGs and establish the equivalence of their existence.
We study a class of linear-quadratic stochastic differential games in which each player interacts directly only with its nearest neighbors in a given graph. We find a semi-explicit Markovian equilibrium for any transitive graph, in terms of the empirical eigenvalue distribution of the graphs normalized Laplacian matrix. This facilitates large-population asymptotics for various graph sequences, with several sparse and dense examples discussed in detail. In particular, the mean field game is the correct limit only in the dense graph case, i.e., when the degrees diverge in a suitable sense. Even though equilibrium strategies are nonlocal, depending on the behavior of all players, we use a correlation decay estimate to prove a propagation of chaos result in both the dense and sparse regimes, with the sparse case owing to the large distances between typical vertices. Without assuming the graphs are transitive, we show also that the mean field game solution can be used to construct decentralized approximate equilibria on any sufficiently dense graph sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا