Do you want to publish a course? Click here

ARWV Code User Manual

76   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

With this report we provide users of an easy manual to facilitate the proper download and use of a sophisticated, high precision, few-body code originally developed by S. Mikkola, and later largely improved and implemented to treat a variety of cases. The code download can be done via the link https://drive.google.com/file/d/16FkVVR4Tk8eKhKMju2vQ9rlWI4Mpv01W/view The use of the code is free upon proper citation. The work is in progress and users are invited to help the authors to improve both the code and the user handbook.



rate research

Read More

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.
This document describes how to use the XML static analyzer in practice. It provides informal documentation for using the XML reasoning solver implementation. The solver allows automated verification of properties that are expressed as logical formulas over trees. A logical formula may for instance express structural constraints or navigation properties (like e.g. path existence and node selection) in finite trees. Logical formulas can be expressed using the syntax of XPath expressions, DTD, XML Schemas, and Relax NG definitions.
52 - J.Ranft 1999
DPMJET samples hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at high energies. The two-component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary interaction. Particle production is realized by the fragmentation of colorless parton-parton chains constructed from the quark content of the interacting hadrons. DPMJET-II.5 includes the cascading of secondaries within the target as well as projectile nuclei which is suppressed by the formation time concept. The excitation energy of the remaining target and projectile nuclei is calculated and using this nuclear evaporation is included into the model. It is possible to use the model up to primary energies of 10${}^{21}$ eV (per nucleon) in the lab. frame. DPMJET can also be applied to neutrino nucleus collisions. It extends the neutrino-nucleon models qel (quasi elastic neutrino interactions) and lepto (deep inelastic neutrino nucleon collisions) to neutrino collisions on nuclear targets.
351 - Piet Reegen 2010
{sc SigSpec} computes the spectral significance levels for the DFT amplitude spectrum of a time series at arbitrarily given sampling. It is based on the analytical solution for the Probability Density Function (PDF) of an amplitude level, including dependencies on frequency and phase and referring to white noise. Using a time series dataset as input, an iterative procedure including step-by-step prewhitening of the most significant signal components and MultiSine least-squares fitting is provided to determine a whole set of signal components, which makes the program a powerful tool for multi-frequency analysis. Instead of the step-by-step prewhitening of the most significant peaks, the program is also able to take into account several steps of the prewhitening sequence simultaneously and check for the combination associated to a minimum residual scatter. This option is designed to overcome the aliasing problem caused by periodic time gaps in the dataset. {sc SigSpec} can detect non-sinusoidal periodicities in a dataset by simultaneously taking into account a fundamental frequency plus a set of harmonics. Time-resolved spectral significance analysis using a set of intervals of the time series is supported to investigate the development of eigenfrequencies over the observation time. Furthermore, an extension is available to perform the {sc SigSpec} analysis for multiple time series input files at once. In this MultiFile mode, time series may be tagged as target and comparison data. Based on this selection, {sc SigSpec} is capable of determining differential significance spectra for the target datasets with respect to coincidences in the comparison spectra. A built-in simulator to generate and superpose a variety of sinusoids and trends as well as different types of noise completes the software package at the present stage of development.
269 - Piet Reegen 2010
{sc Cinderella} is a software solution for the quantitative comparison of time series in the frequency domain. It assigns probabilities to coincident peaks in the DFT amplidude spectra of the datasets under consideration. Two different modes are available. In conditional mode, {sc Cinderella} examines target and comparison datasets on the assumption that the latter contain artifacts only, returning the conditional probability of a target signal, although there is a coincident signal in the comparison data within the frequency resolution. In composed mode, the probability of coincident signal components in both target and comparison data is evaluated. {sc Cinderella} permits to examine multiple target and comparison datasets at once.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا