Local thermal fluctuations in current-carrying superconducting nanowires


Abstract in English

We analyze the effect of different types of fluctuations in internal electron energy on the rates of dark and photon counts in straight current-carrying superconducting nanowires. Dark counts appear due to thermal fluctuations in statistically independent cells with the effective size of the order of the coherence length; each count corresponds to an escape from the equilibrium state through an appropriate saddle point. For photon counts, spectral broadening of the deterministic cut off in the spectra of the detection efficiency can be phenomenologically explained by local thermal fluctuations in the electron energy within cells with the same effective volume as for dark counts.

Download