No Arabic abstract
As a next-generation complex extensive air shower array with a large field of view, the large high altitude air shower observatory (LHAASO) is very sensitive to the very high energy gamma-rays from $sim$ 300 GeV to 1 PeV, and may thus serve as an important probe for the heavy dark matter (DM) particles. In this study, we make a forecast for the LHAASO sensitivities to the gamma-ray signatures resulting from DM decay in dwarf spheroidal satellite galaxies (dSphs) within the LHAASO field of view. Both individual and combined limits for 19 dSphs incorporating the uncertainties of the DM density profile are explored. Owing to the large effective area and strong capability of the photon-proton discrimination, we find that LHASSSO is sensitive to the signatures from decaying DM particles above $mathcal{O}(1)$ TeV. The LHAASO sensitivity to the DM decay lifetime reaches $mathcal{O} (10^{26}) sim mathcal{O} (10^{28})$ s for several decay channels at the DM mass scale from 1 TeV to 100 TeV.
The Large High Altitude Air Shower Observatory (LHAASO) is a next-generation observatory for high energy gamma rays and cosmic rays with wide field of view. It will detect gamma rays with high sensitivity in the energy range from 300 GeV to 1 PeV. Therefore, it is promising for LHAASO to search for the high-energy gamma rays induced by dark matter (DM) self-annihilation in dwarf spheroidal satellite galaxies (dSphs), which are ideal objects for the DM indirect detection. In this work, we investigate the LHAASO sensitivity to DM self-annihilation signatures for 19 dSphs and take the uncertainties on the spatial DM distribution of dSphs into account. We perform a joint likelihood analysis for the 19 dSphs and find that the LHAASO sensitivity to the DM annihilation cross section will reach $mathcal{O}(10^{-24})sim mathcal{O}(10^{-25})$ cm$^3$ s$^{-1}$ at the mass scale above TeV for several annihilation modes, which is larger than the canonical thermal relic cross section by a factor of 10 to 100.
Dwarf spheroidal galaxies are dark matter dominated systems, and as such, ideal for indirect dark matter searches. If dark matter decays into high-energy photons in the dwarf galaxies, they will be a good target for current and future generations of X-ray and gamma-ray telescopes. By adopting the latest estimates of density profiles of dwarf galaxies in the Milky Way, we revise the estimates dark matter decay rates in dwarf galaxies; our results are more robust, but weaker than previous estimates. Applying these results, we study the detectability of dark matter decays with X-ray and very-high-energy gamma-ray telescopes, such as eROSITA, XRISM, Athena, HAWC, and CTA. Our projection shows that all of these X-ray telescopes will be able to critically assess the claim of the 7 keV sterile neutrino decays from stacked galaxy clusters and nearby galaxies. For TeV decaying dark matter, we can constrain its lifetime to be longer than $sim$10$^{27}$-10$^{28}$ s. We also make projections for future dwarf galaxies that would be newly discovered with the Vera Rubin Observatory Legacy Survey of Space and Time, which will further improve the expected sensitivity to dark matter decays both in the keV and PeV mass ranges.
We estimate the sensitivity of LHAASO telescope for the large angular scale diffuse gamma-ray flux in multi-TeV - multi-PeV energy range. We discuss possible sources of the signal in this energy range including the guaranteed flux from cosmic ray interactions in the interstellar medium and possible flux from decaying dark matter. We show that LHAASO will be able to detect the diffuse cosmic ray induced gamma-ray flux up to high Galactic latitude regions thus providing firm identification of the Galactic cosmic ray component of the astrophysical neutrino signal detected by IceCube and clarification of the nature of the knee feature of the cosmic ray spectrum. Comparing the diffuse flux sensitivity with the diffuse gamma-ray flux expected from the dark matter decays, we show LHAASO will be able to detect the gamma-ray signal from dark matter particles of PeV-EeV mass decaying on the time scale up to 3e29 s.
If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the high-latitude gamma-ray flux resulting from dark matter decay for a wide range of channels and masses, including all contributions from inverse Compton scattering and accounting for the production and full evolution of cosmological electromagnetic cascades. We also make use of recent multi-wavelength analyses that constrain the astrophysical contributions to the IGRB, enabling us to more strongly restrict the presence any component arising from decaying dark matter. Over a wide range of decay channels and masses (from GeV to EeV and above), we derive stringent lower limits on the dark matters lifetime, generally in the range of $tau sim (1-5)times 10^{28}$ s.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.