Do you want to publish a course? Click here

A Novel Low Power Non-Volatile SRAM Cell with Self Write Termination

377   0   0.0 ( 0 )
 Added by Kanika Monga
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A non-volatile SRAM cell is proposed for low power applications using Spin Transfer Torque-Magnetic Tunnel Junction (STT-MTJ) devices. This novel cell offers non-volatile storage, thus allowing selected blocks of SRAM to be switched off during standby operation. To further increase the power savings, a write termination circuit is designed which detects completion of MTJ write and closes the bidirectional current path for the MTJ. A reduction of 25.81% in the number of transistors and a reduction of 2.95% in the power consumption is achieved in comparison to prior work on write termination circuits.



rate research

Read More

Modern computing systems are embracing non-volatile memory (NVM) to implement high-capacity and low-cost main memory. Elevated operating voltages of NVM accelerate the aging of CMOS transistors in the peripheral circuitry of each memory bank. Aggressive device scaling increases power density and temperature, which further accelerates aging, challenging the reliable operation of NVM-based main memory. We propose HEBE, an architectural technique to mitigate the circuit aging-related problems of NVM-based main memory. HEBE is built on three contributions. First, we propose a new analytical model that can dynamically track the aging in the peripheral circuitry of each memory bank based on the banks utilization. Second, we develop an intelligent memory request scheduler that exploits this aging model at run time to de-stress the peripheral circuitry of a memory bank only when its aging exceeds a critical threshold. Third, we introduce an isolation transistor to decouple parts of a peripheral circuit operating at different voltages, allowing the decoupled logic blocks to undergo long-latency de-stress operations independently and off the critical path of memory read and write accesses, improving performance. We evaluate HEBE with workloads from the SPEC CPU2017 Benchmark suite. Our results show that HEBE significantly improves both performance and lifetime of NVM-based main memory.
A compact, accurate, and bitwidth-programmable in-memory computing (IMC) static random-access memory (SRAM) macro, named CAP-RAM, is presented for energy-efficient convolutional neural network (CNN) inference. It leverages a novel charge-domain multiply-and-accumulate (MAC) mechanism and circuitry to achieve superior linearity under process variations compared to conventional IMC designs. The adopted semi-parallel architecture efficiently stores filters from multiple CNN layers by sharing eight standard 6T SRAM cells with one charge-domain MAC circuit. Moreover, up to six levels of bit-width of weights with two encoding schemes and eight levels of input activations are supported. A 7-bit charge-injection SAR (ciSAR) analog-to-digital converter (ADC) getting rid of sample and hold (S&H) and input/reference buffers further improves the overall energy efficiency and throughput. A 65-nm prototype validates the excellent linearity and computing accuracy of CAP-RAM. A single 512x128 macro stores a complete pruned and quantized CNN model to achieve 98.8% inference accuracy on the MNIST data set and 89.0% on the CIFAR-10 data set, with a 573.4-giga operations per second (GOPS) peak throughput and a 49.4-tera operations per second (TOPS)/W energy efficiency.
Energy harvesting is an attractive way to power future IoT devices since it can eliminate the need for battery or power cables. However, harvested energy is intrinsically unstable. While FPGAs have been widely adopted in various embedded systems, it is hard to survive unstable power since all the memory components in FPGA are based on volatile SRAMs. The emerging non-volatile memory based FPGAs provide promising potentials to keep configuration data on the chip during power outages. Few works have considered implementing efficient runtime intermediate data checkpoint on non-volatile FPGAs. To realize accumulative computation under intermittent power on FPGA, this paper proposes a low-cost design framework, Data-Flow-Tracking FPGA (DFT-FPGA), which utilizes binary counters to track intermediate data flow. Instead of keeping all on-chip intermediate data, DFT-FPGA only targets on necessary data that is labeled by off-line analysis and identified by an online tracking system. The evaluation shows that compared with state-of-the-art techniques, DFT-FPGA can realize accumulative computing with less off-line workload and significantly reduce online roll-back time and resource utilization.
127 - Jie Zhang , Myoungsoo Jung 2018
Energy efficiency and computing flexibility are some of the primary design constraints of heterogeneous computing. In this paper, we present FlashAbacus, a data-processing accelerator that self-governs heterogeneous kernel executions and data storage accesses by integrating many flash modules in lightweight multiprocessors. The proposed accelerator can simultaneously process data from different applications with diverse types of operational functions, and it allows multiple kernels to directly access flash without the assistance of a host-level file system or an I/O runtime library. We prototype FlashAbacus on a multicore-based PCIe platform that connects to FPGA-based flash controllers with a 20 nm node process. The evaluation results show that FlashAbacus can improve the bandwidth of data processing by 127%, while reducing energy consumption by 78.4%, as compared to a conventional method of heterogeneous computing. blfootnote{This paper is accepted by and will be published at 2018 EuroSys. This document is presented to ensure timely dissemination of scholarly and technical work.
We introduce LightOns Optical Processing Unit (OPU), the first photonic AI accelerator chip available on the market for at-scale Non von Neumann computations, reaching 1500 TeraOPS. It relies on a combination of free-space optics with off-the-shelf components, together with a software API allowing a seamless integration within Python-based processing pipelines. We discuss a variety of use cases and hybrid network architectures, with the OPU used in combination of CPU/GPU, and draw a pathway towards optical advantage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا