Do you want to publish a course? Click here

Direct discrimination of structured light by humans

109   0   0.0 ( 0 )
 Added by Dusan Sarenac
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We predict and experimentally verify an entoptic phenomenon through which humans are able to perceive and discriminate structured light with space-varying polarization. Direct perception and discrimination is possible through the observation of distinct profiles induced by the interaction between the polarization gradients in a uniform-intensity beam and the radially symmetric dichroic elements that are centered on the foveola in the macula of the human eye. A psychophysical study was conducted where optical states with coupled polarization and orbital angular momentum (OAM) were directed onto the retina of participants. The participants were able to correctly discriminate between two states, differentiated by OAM =pm7, with an average success probability of 77.6 % (average sensitivity d^prime=1.7, t(9) = 5.9, p = 2times 10^{-4}). These results enable new methods of robustly characterizing the structure of the macula, probing retina signalling pathways, and conducting experiments with non-separable optical states and human detectors.

rate research

Read More

Materials of which the optical response is determined by their structure are of much interest both for their fundamental properties and applications. Examples range from simple gratings to photonic crystals. Obtaining control over the optical properties is of crucial importance in this context, and it is often attempted by electro-optical effect or by using magnetic fields. In this paper, we introduce the use of light to switch and tune the optical response of a structured material, exploiting a physical deformation induced by light itself. In this new strategy, light drives an elastic reshaping, which leads to different spectral properties and hence to a change in the optical response. This is made possible by the use of liquid crystalline networks structured by Direct Laser Writing. As a proof of concept, a grating structure with sub-millisecond time-response is demonstrated for optical beam steering exploiting an optically induced reversible shape-change. Experimental observations are combined with finite-element modeling to understand the actuation process dynamics and to obtain information on how to tune the time and the power response of this technology. This optical beam steerer serves as an example for achieving full optical control of light in broad range of structured optical materials.
The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We describe a foundational demonstration that examines a laser architecture offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed with the discrete dipole approximation (DDA) and the scanning flow cytometry (SFC), respectively. SFC permits measurement of angular dependence of light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the incident light upon the indicatrix. Numerical calculations of indicatrices for several aspect ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e. face-on and rim-on incidence. Only the oblate spheroid model for rim-on incidence gives results similar to the rigorous biconcave disk model.
The study of light propagation has been a cornerstone of progress in physics and technology. Recently, advances in control and shaping of light have created significant interest in the propagation of complex structures of light -- particularly under realistic terrestrial conditions. While theoretical understanding of this research question has significantly grown over the last two decades, outdoor-experiments with complex light structures are rare, and comparisons with theory have been nearly lacking. Such situations show a significant gap between theoretical models of atmospheric light behaviour and current experimental effort. Here, in an attempt to reduce this gap, we describe an interesting result of atmospheric models which are feasible for empirical observation. We analyze in detail light propagation in different spatial bases and present results of the theory that the influence of atmospheric turbulence is basis-dependent. Concretely, light propagating as eigenstate in one complete basis is stronger influenced by atmosphere than light propagating in a different, complete basis. We obtain these results by exploiting a family of the continuously adjustable, complete basis of spatial modes -- the Ince-Gauss modes. Our concrete numerical results will hopefully inspire experimental efforts and bring the theoretical and empirical study of complex light patterns in realistic scenarios closer together.
We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of sum-frequency generation in a periodically poled lithium niobate (ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform far-field intensity measurements of the frequency-converted field, and verify the sought-after transformation of the characteristic intensity and phase profiles for various input modes. The coherence of the frequency-conversion process is confirmed using a mode-projection technique with a phase mask and a single-mode fiber. The presented results could be of great relevance to novel applications in high-resolution microscopy and quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا