No Arabic abstract
A spectral camera based on ghost imaging via sparsity constraints (GISC) acquires a spectral data-cube (x; y; {lambda}) through a single exposure. The noise immunity of the system is one of the important factors affecting the quality of the reconstructed images, especially at low sampling rates. Tailoring the intensity to generate super-Rayleigh speckle patterns which have superior noise immunity may offer an effective route to promote the imaging quality of GISC spectral camera. According to the structure of GISC spectral camera, we proposed a universal method for generating super-Rayleigh speckle patterns with customized intensity statistics based on the principle of reversibility of light. Simulation and experimental results demonstrate that, within a wide imaging spectral bandwidth, GISC spectral camera with super-Rayleigh modulator not only has superior noise immunity, but also has higher imaging quality at low sampling rates. This work will promote the application of GISC spectral camera by improving the quality of imaging results, especially in weak-light illumination.
The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.
Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial and spectral parameters by manufactures. Here, we demonstrate a single-shot multispectral imaging technique that gives flexibility to end-users with a very simple optical setup, thank to spatial correlation and spectral decorrelation of speckle patterns. These seemingly random speckle patterns are point spreading functions (PSFs) generated by light from point sources propagating through a strongly scattering medium. The spatial correlation of PSFs allows image recovery with deconvolution techniques, while the spectral decorrelation allows them to play the role of tune-able spectral filters in the deconvolution process. Our demonstrations utilizing optical physics of strongly scattering media and computational imaging present the most cost-effective approach for multispectral imaging with great advantages.
By encoding the high-dimensional light-field imaging information into a detectable two-dimensional speckle plane, ghost imaging camera via sparsity constraints (GISC camera) can directly catch the high-dimensional light-field imaging information with only one snapshot. This makes it worth to revisit the spatial resolution limit of this optical imaging system. In this paper we show both theoretically and experimentally that, while the resolution in high-dimensional light-field space is still limited by diffraction, the statistical spatial resolution of GISC camera can be greatly improved comparing to classical Rayleighs criterion by utilizing the discernibility in high-dimensional light-field space. The interaction between imaging resolution, degrees of freedom of light field, and degrees of freedom of objects in high-dimensional light-field space is also demonstrated.
Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or biological tissues that scramble light paths, create speckle patterns and hinder objects visualization, let alone super-resolution imaging. Here, we realize a method to do non-invasive super-resolution imaging through scattering media based on stochastic optical scattering localization imaging (SOSLI) technique. Simply by capturing multiple speckle patterns of photo-switchable emitters in our demonstration, the stochastic approach utilizes the speckle correlation properties of scattering media to retrieve an image with more than five-fold resolution enhancement compared to the diffraction limit, while posing no fundamental limit in achieving higher spatial resolution. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only optical diffusers, i.e. static scattering media, but also biological tissues, i.e. dynamic scattering media with decorrelation of up to 80%. Our approach paves the way to non-invasively visualize various samples behind scattering media at unprecedented levels of detail.