Do you want to publish a course? Click here

Global Convergence Rate Analysis of a Generic Line Search Algorithm with Noise

54   0   0.0 ( 0 )
 Added by Albert Berahas
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we develop convergence analysis of a modified line search method for objective functions whose value is computed with noise and whose gradient estimates are inexact and possibly random. The noise is assumed to be bounded in absolute value without any additional assumptions. We extend the framework based on stochastic methods from [Cartis and Scheinberg, 2018] which was developed to provide analysis of a standard line search method with exact function values and random gradients to the case of noisy functions. We introduce two alternative conditions on the gradient which when satisfied with some sufficiently large probability at each iteration, guarantees convergence properties of the line search method. We derive expected complexity bounds to reach a near optimal neighborhood for convex, strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood on the noise is specified.



rate research

Read More

The alternating direction method of multipliers (ADMM) is a popular method for solving convex separable minimization problems with linear equality constraints. The generalization of the two-block ADMM to the three-block ADMM is not trivial since the three-block ADMM is not convergence in general. Many variants of three-block ADMM have been developed with guarantee convergence. Besides the ADMM, the alternating minimization algorithm (AMA) is also an important algorithm for solving the convex separable minimization problem with linear equality constraints. The AMA is first proposed by Tseng, and it is equivalent to the forward-backward splitting algorithm applied to the corresponding dual problem. In this paper, we design a variant of three-block AMA, which is derived by employing an inertial extension of the three-operator splitting algorithm to the dual problem. Compared with three-block ADMM, the first subproblem of the proposed algorithm only minimizing the Lagrangian function. As a by-product, we obtain a relaxed algorithm of Davis and Yin. Under mild conditions on the parameters, we establish the convergence of the proposed algorithm in infinite-dimensional Hilbert spaces. Finally, we conduct numerical experiments on the stable principal component pursuit (SPCP) to verify the efficiency and effectiveness of the proposed algorithm.
112 - Tuyen Trung Truong 2021
In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established for this method, experiments on small scale problems show that the method works very competitively against other well known modifications of Newtons method such as Adaptive Cubic Regularization and BFGS, as well as first order methods such as Unbounded Two-way Backtracking Gradient Descent. In this paper, we resolve the convergence guarantee issue by proposing a modification of New Q-Newtons method, named New Q-Newtons method Backtracking, which incorporates a more sophisticated use of hyperparameters and a Backtracking line search. This new method has very good theoretical guarantees, which for a {bf Morse function} yields the following (which is unknown for New Q-Newtons method): {bf Theorem.} Let $f:mathbb{R}^mrightarrow mathbb{R}$ be a Morse function, that is all its critical points have invertible Hessian. Then for a sequence ${x_n}$ constructed by New Q-Newtons method Backtracking from a random initial point $x_0$, we have the following two alternatives: i) $lim_{nrightarrowinfty}||x_n||=infty$, or ii) ${x_n}$ converges to a point $x_{infty}$ which is a {bf local minimum} of $f$, and the rate of convergence is {bf quadratic}. Moreover, if $f$ has compact sublevels, then only case ii) happens. As far as we know, for Morse functions, this is the best theoretical guarantee for iterative optimization algorithms so far in the literature. We have tested in experiments on small scale, with some further simplifie
We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate $mathcal{O}(log(n)/n)$ in expectation for the strongly monotone case, as well as almost sure convergence for the general case. Furthermore, in the context of application to convex-concave saddle point problems, we derive the rate of the primal-dual gap. In particular, we also obtain $mathcal{O}(1/n)$ rate convergence of the primal-dual gap in the deterministic setting.
383 - Yizun Lin , Yuesheng Xu 2021
We estimate convergence rates for fixed-point iterations of a class of nonlinear operators which are partially motivated from solving convex optimization problems. We introduce the notion of the generalized averaged nonexpansive (GAN) operator with a positive exponent, and provide a convergence rate analysis of the fixed-point iteration of the GAN operator. The proposed generalized averaged nonexpansiveness is weaker than the averaged nonexpansiveness while stronger than nonexpansiveness. We show that the fixed-point iteration of a GAN operator with a positive exponent converges to its fixed-point and estimate the local convergence rate (the convergence rate in terms of the distance between consecutive iterates) according to the range of the exponent. We prove that the fixed-point iteration of a GAN operator with a positive exponent strictly smaller than 1 can achieve an exponential global convergence rate (the convergence rate in terms of the distance between an iterate and the solution). Furthermore, we establish the global convergence rate of the fixed-point iteration of a GAN operator, depending on both the exponent of generalized averaged nonexpansiveness and the exponent of the H$ddot{text{o}}$lder regularity, if the GAN operator is also H$ddot{text{o}}$lder regular. We then apply the established theory to three types of convex optimization problems that appear often in data science to design fixed-point iterative algorithms for solving these optimization problems and to analyze their convergence properties.
Dual decomposition is widely utilized in distributed optimization of multi-agent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet drop. In addition, computational errors also exist when individual agents solve their own subproblems. In this paper, we analyze the convergence of the dual decomposition algorithm in distributed optimization when both the asynchrony in communication and the inexactness in solving subproblems exist. We find that the interaction between asynchrony and inexactness slows down the convergence rate from $mathcal{O} ( 1 / k )$ to $mathcal{O} ( 1 / sqrt{k} )$. Specifically, with a constant step size, the value of objective function converges to a neighborhood of the optimal value, and the solution converges to a neighborhood of the exact optimal solution. Moreover, the violation of the constraints diminishes in $mathcal{O} ( 1 / sqrt{k} )$. Our result generalizes and unifies the existing ones that only consider either asynchrony or inexactness. Finally, numerical simulations validate the theoretical results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا