Phase diagram, symmetry breaking, and critical behavior of three-dimensional lattice multiflavor scalar chromodynamics


Abstract in English

We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, characterized by a nonabelian SU(N_c) gauge symmetry. For N_f>1 (multiflavor case), it presents two phases separated by a transition line where a gauge-invariant order parameter condenses, being associated with the breaking of the residual global symmetry after gauging. The nature of the phase transition line is discussed within two field-theoretical approaches, the continuum scalar chromodynamics and the Landau-Ginzburg- Wilson (LGW) Phi4 approach based on a gauge-invariant order parameter. Their predictions are compared with simulation results for N_f=2, 3 and N_c = 2, 3, and 4. The LGW approach turns out to provide the correct picture of the critical behavior, unlike continuum scalar chromodynamics.

Download