No Arabic abstract
Gastric cancer is one of the most common cancers, which ranks third among the leading causes of cancer death. Biopsy of gastric mucosa is a standard procedure in gastric cancer screening test. However, manual pathological inspection is labor-intensive and time-consuming. Besides, it is challenging for an automated algorithm to locate the small lesion regions in the gigapixel whole-slide image and make the decision correctly.To tackle these issues, we collected large-scale whole-slide image dataset with detailed lesion region annotation and designed a whole-slide image analyzing framework consisting of 3 networks which could not only determine the screening result but also present the suspicious areas to the pathologist for reference. Experiments demonstrated that our proposed framework achieves sensitivity of 97.05% and specificity of 92.72% in screening task and Dice coefficient of 0.8331 in segmentation task. Furthermore, we tested our best model in real-world scenario on 10,315 whole-slide images collected from 4 medical centers.
Segmentation of multiple anatomical structures is of great importance in medical image analysis. In this study, we proposed a $mathcal{W}$-net to simultaneously segment both the optic disc (OD) and the exudates in retinal images based on the multi-task learning (MTL) scheme. We introduced a class-balanced loss and a multi-task weighted loss to alleviate the imbalanced problem and to improve the robustness and generalization property of the $mathcal{W}$-net. We demonstrated the effectiveness of our approach by applying five-fold cross-validation experiments on two public datasets e_ophtha_EX and DiaRetDb1. We achieved F1-score of 94.76% and 95.73% for OD segmentation, and 92.80% and 94.14% for exudates segmentation. To further prove the generalization property of the proposed method, we applied the trained model on the DRIONS-DB dataset for OD segmentation and on the MESSIDOR dataset for exudate segmentation. Our results demonstrated that by choosing the optimal weights of each task, the MTL based $mathcal{W}$-net outperformed separate models trained individually on each task. Code and pre-trained models will be available at: url{https://github.com/FundusResearch/MTL_for_OD_and_exudates.git}.
Breast cancer has become one of the most prevalent cancers by which people all over the world are affected and is posed serious threats to human beings, in a particular woman. In order to provide effective treatment or prevention of this cancer, disease diagnosis in the early stages would be of high importance. There have been various methods to detect this disorder in which using images have to play a dominant role. Deep learning has been recently adopted widely in different areas of science, especially medicine. In breast cancer detection problems, some diverse deep learning techniques have been developed on different datasets and resulted in good accuracy. In this article, we aimed to present a deep neural network model to classify histopathological images from the Databiox image dataset as the first application on this image database. Our proposed model named BCNet has taken advantage of the transfer learning approach in which VGG16 is selected from available pertained models as a feature extractor. Furthermore, to address the problem of insufficient data, we employed the data augmentation technique to expand the input dataset. All implementations in this research, ranging from pre-processing actions to depicting the diagram of the model architecture, have been carried out using tf.keras API. As a consequence of the proposed model execution, the significant validation accuracy of 88% and evaluation accuracy of 72% obtained.
We trained and evaluated a localization-based deep CNN for breast cancer screening exam classification on over 200,000 exams (over 1,000,000 images). Our model achieves an AUC of 0.919 in predicting malignancy in patients undergoing breast cancer screening, reducing the error rate of the baseline (Wu et al., 2019a) by 23%. In addition, the models generates bounding boxes for benign and malignant findings, providing interpretable predictions.
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented. There exists extensive literature on this subject in the context of natural images that can potentially be built upon. However, it cannot be assumed that conclusions about robustness will transfer from natural images to mammogram images, due to significant differences between the two image modalities. In order to determine whether conclusions will transfer, we measure the sensitivity of a radiologist-level screening mammogram image classifier to four commonly studied input perturbations that natural image classifiers are sensitive to. We find that mammogram image classifiers are also sensitive to these perturbations, which suggests that we can build on the existing literature. We also perform a detailed analysis on the effects of low-pass filtering, and find that it degrades the visibility of clinically meaningful features called microcalcifications. Since low-pass filtering removes semantically meaningful information that is predictive of breast cancer, we argue that it is undesirable for mammogram image classifiers to be invariant to it. This is in contrast to natural images, where we do not want DNNs to be sensitive to low-pass filtering due to its tendency to remove information that is human-incomprehensible.
Purpose: To develop and evaluate the accuracy of a multi-view deep learning approach to the analysis of high-resolution synthetic mammograms from digital breast tomosynthesis screening cases, and to assess the effect on accuracy of image resolution and training set size. Materials and Methods: In a retrospective study, 21,264 screening digital breast tomosynthesis (DBT) exams obtained at our institution were collected along with associated radiology reports. The 2D synthetic mammographic images from these exams, with varying resolutions and data set sizes, were used to train a multi-view deep convolutional neural network (MV-CNN) to classify screening images into BI-RADS classes (BI-RADS 0, 1 and 2) before evaluation on a held-out set of exams. Results: Area under the receiver operating characteristic curve (AUC) for BI-RADS 0 vs non-BI-RADS 0 class was 0.912 for the MV-CNN trained on the full dataset. The model obtained accuracy of 84.8%, recall of 95.9% and precision of 95.0%. This AUC value decreased when the same model was trained with 50% and 25% of images (AUC = 0.877, P=0.010 and 0.834, P=0.009 respectively). Also, the performance dropped when the same model was trained using images that were under-sampled by 1/2 and 1/4 (AUC = 0.870, P=0.011 and 0.813, P=0.009 respectively). Conclusion: This deep learning model classified high-resolution synthetic mammography scans into normal vs needing further workup using tens of thousands of high-resolution images. Smaller training data sets and lower resolution images both caused significant decrease in performance.