No Arabic abstract
There is demand from science funders, industry, and the public that science should become more risk-taking, more out-of-the-box, and more interdisciplinary. Is it possible to tell how interdisciplinary and out-of-the-box scientific papers are, or which papers are mainstream? Here we use the bibliographic coupling network, derived from all physics papers that were published in the Physical Review journals in the past century, to try to identify them as mainstream, out-of-the-box, or interdisciplinary. We show that the network clusters into scientific fields. The position of individual papers with respect to these clusters allows us to estimate their degree of mainstreamness or interdisciplinary. We show that over the past decades the fraction of mainstream papers increases, the fraction of out-of-the-box decreases, and the fraction of interdisciplinary papers remains constant. Studying the rewards of papers, we find that in terms of absolute citations, both, mainstream and interdisciplinary papers are rewarded. In the long run, mainstream papers perform less than interdisciplinary ones in terms of citation rates. We conclude that to avoid a trend towards mainstreamness a new incentive scheme is necessary.
The web application presented in this paper allows for an analysis to reveal centres of excellence in different fields worldwide using publication and citation data. Only specific aspects of institutional performance are taken into account and other aspects such as teaching performance or societal impact of research are not considered. Based on data gathered from Scopus, field-specific excellence can be identified in institutions where highly-cited papers have been frequently published. The web application combines both a list of institutions ordered by different indicator values and a map with circles visualizing indicator values for geocoded institutions. Compared to the mapping and ranking approaches introduced hitherto, our underlying statistics (multi-level models) are analytically oriented by allowing (1) the estimation of values for the number of excellent papers for an institution which are statistically more appropriate than the observed values; (2) the calculation of confidence intervals as measures of accuracy for the institutional citation impact; (3) the comparison of a single institution with an average institution in a subject area, and (4) the direct comparison of at least two institutions.
Tracing the evolution of specific topics is a subject area which belongs to the general problem of mapping the structure of scientific knowledge. Often bibliometric data bases are used to study the history of scientific topic evolution from its appearance to its extinction or merger with other topics. In this chapter the authors present an analysis of the academic response to the disaster that occurred in 1986 in Chornobyl (Chernobyl), Ukraine, considered as one of the most devastating nuclear power plant accidents in history. Using a bibliographic database the distributions of Chornobyl-related papers in different scientific fields are analysed, as are their growth rates and properties of co-authorship networks. Elements of descriptive statistics and tools of complex-network theory are used to highlight interdisciplinary as well as international effects. In particular, tools of complex-network science enable information visualization complemented by further quantitative analysis. A further goal of the chapter is to provide a simple pedagogical introduction to the application of complex-network analysis for visual data representation and interdisciplinary communication.
To quantify the mechanism of a complex network growth we focus on the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on copying/redirection/triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such verification is performed by measuring citation dynamics of Physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including non-stationary citation distributions, diverging citation trajectory of similar papers, runaways or immortal papers with infinite citation lifetime etc. Thus, our most important finding is nonlinearity in complex network growth. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
Nowadays, researchers have moved to platforms like Twitter to spread information about their ideas and empirical evidence. Recent studies have shown that social media affects the scientific impact of a paper. However, these studies only utilize the tweet counts to represent Twitter activity. In this paper, we propose TweetPap, a large-scale dataset that introduces temporal information of citation/tweets and the metadata of the tweets to quantify and understand the discourse of scientific papers on social media. The dataset is publicly available at https://github.com/lingo-iitgn/TweetPap
Quantifying the impact of scientific papers objectively is crucial for research output assessment, which subsequently affects institution and country rankings, research funding allocations, academic recruitment and national/international scientific priorities. While most of the assessment schemes based on publication citations may potentially be manipulated through negative citations, in this study, we explore Conflict of Interest (COI) relationships and discover negative citations and subsequently weaken the associated citation strength. PANDORA (Positive And Negative COI- Distinguished Objective Rank Algorithm) has been developed, which captures the positive and negative COI, together with the positive and negative suspected COI relationships. In order to alleviate the influence caused by negative COI relationship, collaboration times, collaboration time span, citation times and citation time span are employed to determine the citing strength; while for positive COI relationship, we regard it as normal citation relationship. Furthermore, we calculate the impact of scholarly papers by PageRank and HITS algorithms, based on a credit allocation algorithm which is utilized to assess the impact of institutions fairly and objectively. Experiments are conducted on the publication dataset from American Physical Society (APS) dataset, and the results demonstrate that our method significantly outperforms the current solutions in Recommendation Intensity of list R at top-K and Spearmans rank correlation coefficient at top-K.