We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a $d$-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different $d$ modes.