Do you want to publish a course? Click here

Cloud-cloud collisions in the common foot point of molecular loops 1 and 2 in the Galactic Center

106   0   0.0 ( 0 )
 Added by Rei Enokiya Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent large-area, deep CO surveys in the Galactic disk have revealed the formation of ~50 high-mass stars or clusters triggered by cloud-cloud collisions (CCCs). Although the Galactic Center (GC) -- which contains the highest volume density of molecular gas -- is the most favorable place for cloud collisions, systematic studies of CCCs in that region are still untouched. Here we report for the first time evidence of CCCs in the common foot point of molecular loops 1 and 2 in the GC. We have investigated the distribution of molecular gas toward the foot point by using a methodology for identifying CCCs, and we have discovered clear signatures of CCCs. Using the estimated displacements and relative velocities of the clouds, we find the elapsed time since the beginnings of the collisions to be 105-6 yr. We consider possible origins for previously reported peculiar velocity features in the foot point and discuss star formation triggered by CCCs in the GC.



rate research

Read More

We performed a search of star-forming sites influenced by external factors, such as SNRs, HII regions, and cloud-cloud collisions, to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO $v=0, J=2-1$, H$^{13}$CO$^+ J=1-0$, and CS $J=1-0$ emission lines obtained by the Nobeyama 45-m telescope. We found a half-shell like feature (HSF) with a high integrated line intensity ratio of $ int T_{ mathrm B}$(SiO $v=0, J=2-1$)$dv$/$ int T_{ mathrm B}$(H$^{13}$CO$^+ J=1-0$)$dv sim6-8$ in the 50 km s$^{-1}$ molecular cloud, which is a most conspicuous molecular cloud in the region and harbors an active star-forming site seen as several compact HII regions. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF is also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature is originated by a cloud-cloud collision (CCC). We analyzed the CS $J=1-0$ emission line data obtained by Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to $ sim2500M_ odot$ although the CMF of the non-CCC region reaches the upper limit of $ sim1500M_ odot$. Most massive molecular cores with $M_{ mathrm{gas}}>750 M_{ odot}$ are located only around the ridge of the HSF and adjoin the compact HII region. These may be a sign of massive star formation induced by CCC in the Galactic center region.
The Galactic Center 50 km s$^{-1}$ Molecular Cloud (50MC) is the most remarkable molecular cloud in the Sagittarius A region. This cloud is a candidate for the massive star formation induced by cloud-cloud collision (CCC) with a collision velocity of $sim30rm~km~s^{-1}$ that is estimated from the velocity dispersion. We observed the whole of the 50MC with a high angular resolution ($sim2.0times1.4$) in ALMA cycle 1 in the H$^{13}$CO$^+~J=1-0$ and ${rm C^{34}S}~J=2-1$ emission lines. We identified 241 and 129 bound cores with a virial parameter of less than 2, which are thought to be gravitationally bound, in the H$^{13}$CO$^+$ and ${rm C^{34}S}$ maps using the clumpfind algorithm, respectively. In the CCC region, the bound ${rm H^{13}CO^+}$ and ${rm C^{34}S}$ cores are 119 and 82, whose masses are $68~%$ and $76~%$ of those in the whole 50MC, respectively. The distribution of the core number and column densities in the CCC are biased to larger densities than those in the non-CCC region. The distributions indicate that the CCC compresses the molecular gas and increases the number of the dense bound cores. Additionally, the massive bound cores with masses of $>3000~M_{odot}$ exist only in the CCC region, although the slope of the core mass function (CMF) in the CCC region is not different from that in the non-CCC region. We conclude that the compression by the CCC efficiently formed massive bound cores even if the slope of the CMF is not changed so much by the CCC.
Aims: To reveal the morphology, chemical composition, kinematics and to establish the main processes prevalent in the gas at the foot points of the giant molecular loops (GMLs) in the Galactic center region Methods: Using the 22-m Mopra telescope, we mapped the M$-3.8+0.9$ molecular cloud, placed at the foot points of a giant molecular loop, in 3-mm range molecular lines. To derive the molecular hydrogen column density, we also observed the $^{13}$CO $(2-1)$ line at 1 mm using the 12-m APEX telescope. From the 3 mm observations 12 molecular species were detected, namely HCO$^+$, HCN, H$^{13}$CN, HNC, SiO, CS, CH$_3$OH, N$_2$H$^+$, SO, HNCO, OCS, and HC$_3$N. Results: Maps revealing the morphology and kinematics of the M$-3.8+0.9$ molecular cloud in different molecules are presented. We identified six main molecular complexes. We derive fractional abundances in 11 selected positions of the different molecules assuming local thermodynamical equilibrium. Conclusions: Most of the fractional abundances derived for the M$-3.8+0.9$ molecular cloud are very similar over the whole cloud. However, the fractional abundances of some molecules show significant difference with respect to those measured in the central molecular zone (CMZ). The abundances of the shock tracer SiO are very similar between the GMLs and the CMZ. The methanol emission is the most abundant specie in the GMLs. This indicates that the gas is likely affected by moderate $sim $ 30 km s$^{-1}$ or even high velocity (50 km s$^{-1}$) shocks, consistent with the line profile observed toward one of the studied position. The origin of the shocks is likely related to the flow of the gas throughout the GMLs towards the foot points.
Fukui et al. (2006) discovered two huge molecular loops in the Galactic center located in (l, b) ~ (355 deg-359 deg, 0 deg-2 deg) in a large velocity range of -180-40 km s^-1. Following the discovery, we present detailed observational properties of the two loops based on NANTEN 12CO(J=1-0) and 13CO(J=1-0) datasets at 10 pc resolution including a complete set of velocity channel distributions and comparisons with HI and dust emissions as well as with the other broad molecular features. We find new features on smaller scales in the loops including helical distributions in the loop tops and vertical spurs. The loops have counterparts of the HI gas indicating that the loops include atomic gas. The IRAS far infrared emission is also associated with the loops and was used to derive an X-factor of 0.7(+/-0.1){times}10^20 cm^-2 (K km s^-1)^-1 to convert the 12CO intensity into the total molecular hydrogen column density. From the 12CO, 13CO, H I and dust datasets we estimated the total mass of loops 1 and 2 to be ~1.4 {times} 106 Msun and ~1.9 {times} 10^6 Msun, respectively, where the H I mass corresponds to ~10-20% of the total mass and the total kinetic energy of the two loops to be ~10^52 ergs. An analysis of the kinematics of the loops yields that the loops are rotating at ~47 km s-1 and expanding at ~141 km s^-1 at a radius of 670 pc from the center. Fukui et al. (2006) presented a model that the loops are created by the magnetic flotation due to the Parker instability with an estimated magnetic field strength of ~150 {mu}G. We present comparisons with the recent numerical simulations of the magnetized nuclear disk by Machida et al. (2009) and Takahashi et al. (2009) and show that the theoretical results are in good agreements with the observations. The helical distributions also suggest that some magnetic instability plays a role similarly to the solar helical features.
We performed a search of cloud-cloud collision (CCC) sites in the Sagittarius A molecular cloud (SgrAMC) based on the survey observations using the Nobeyama 45-m telescope in the C$^{32}$S $J=1-0$ and SiO $v=0~J=2-1$ emission lines. We found candidates being abundant in shocked molecular gas in the Galactic Center Arc (GCA). One of them, M0.014-0.054, is located in the mapping area of our previous ALMA mosaic observation. We explored the structure and kinematics of M0.014-0.054 in the C$^{32}$S $J=2-1$, C$^{34}$S $J=2-1$, SiO $v=0~J=2-1$, H$^{13}$CO$^+ J=1-0$, and SO $N,J=2,2-1,1$ emission lines and fainter emission lines. M0.014-0.054 is likely formed by the CCC between the vertical molecular filaments (VP) of the GCA, and other molecular filaments along Galactic longitude. The bridging features between these colliding filaments on the PV diagram are found, which are the characteristics expected in CCC sites. We also found continuum compact objects in M0.014-0.054, which have no counterpart in the H42$alpha$ recombination line. They are detected in the SO emission line, and would be Hot Molecular Core (HMC)s. Because the LTE mass of one HMC is larger than the virial mass, it is bound gravitationally. This is also detected in the CCS emission line. The embedded star would be too young to ionize the surrounding molecular cloud. The VP is traced by poloidal magnetic field. Because the strength of the magnetic field is estimated to be $sim m$Gauss using the CF method, the VP is supported against fragmentation. The star formation in the HMC of M0.014-0.054 is likely induced by the CCC between the stable filaments, which may be a common mechanism in the SgrAMC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا