In this letter, we explore the performance limits of short polar codes and find that the maximum likelihood (ML) performance of a simple CRC-polar concatenated scheme can approach the finite blocklength capacity. Then, in order to approach the ML performance with a low average complexity, a CRC-aided hybrid decoding (CA-HD) algorithm is proposed and its decoding process is divided into two steps. In the first step, the received sequence is decoded by the adaptive successive cancellation list (ADSCL) decoding. In the second step, CRC-aided sphere decoding with a reasonable initial radius is used to decode the received sequence. To obtain the reasonable radius, the CRC bits of the survival paths in ADSCL are recalculated and the minimum Euclidean distance between the survival path and the received sequence is chosen as the initial radius. The simulation results show that CA-HD can achieve within about $0.025$dB of the finite blocklength capacity at the block error ratio $10^{-3}$ with code length $128$ and code rate $1/2$.