Do you want to publish a course? Click here

Varstrometry for Off-nucleus and Dual sub-Kpc AGN (VODKA): How Well-centered Are Low-z AGN?

114   0   0.0 ( 0 )
 Added by Yue Shen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Off-nucleus active galactic nuclei (AGN) can be signposts of inspiraling supermassive black holes (SMBHs) on galactic scales, or accreting SMBHs recoiling after the coalescence of a SMBH binary or slingshot from three-body interactions. Because of the stochastic variability of AGN, the measured photocenter of an unresolved AGN-host system will display astrometric jitter that depends on the off-nucleus distance of the AGN, the total photometric variability of the system, and the AGN-host contrast. Here we use the precision astrometry from Gaia DR2 to constrain the off-nucleus population of a low-redshift (0.3<z<0.8) sample of unobscured broad-line AGN drawn from the SDSS with significant host contribution and photometric variability. We find that Gaia DR2 already provides strong constraints on the projected off-nucleus distance in the sub-kpc regime at these redshifts: 99%, 90% and 40% of AGN must be well-centered to <1 kpc, <500 pc and <100 pc, respectively. Limiting the sample to the most variable subset constrains >99% of AGN to be well-centered below 500 parsec. These results suggest that genuine off-nucleus AGN (offset by > a few hundred pc) must be rare at low redshift. Future Gaia releases of time series of photocenter and flux measurements, improved treatments for extended sources and longer baselines will further tighten these constraints, and enable a systematic full-sky search for rare off-nucleus AGN on ~ 10-1000 pc scales.



rate research

Read More

Gaias milli-arcsec (mas) astrometric precision allows systematic identification of optically-selected sub-kpc dual active galactic nuclei (AGN), off-nucleus AGN, and small-scale lensed quasars by `varstrometry -- where variability-induced astrometric jitter, i.e., temporal displacements of photocenter in unresolved sources, can be reasonably well detected or constrained. This approach extends systematic searches for small-scale ($gtrsim$ mas) dual and off-nucleus AGN to poorly explored regime between $sim 10$ pc and $sim 1$ kpc, with Gaias full sky coverage and depth to $Gsim 21$. We outline the general principles of this method and calculate the expected astrometric signals from the full time series of photocenter measurements and light curves. We demonstrate the feasibility of varstrometry by using Gaia DR2 data on a sample of variable pre-main sequence stars with known close companions. We find that extended host galaxies have a significant impact on the accuracy of astrometric and photometric variability in Gaia DR2, a situation to be improved in future Gaia releases. Using spectroscopically confirmed SDSS quasars, we present several examples of candidate sub-kpc off-nucleus or dual AGN selected from Gaia DR2. We discuss the merits and limitations of this method and follow-up strategy for promising candidates. We highlight Gaias potential of systematically discovering and characterizing the sub-kpc off-nucleus and dual AGN population in the entire optical sky.
Dual supermassive black holes (SMBHs) at $sim$kpc scales are the progenitor population of SMBH mergers and play an important role in understanding the pairing and dynamical evolution of massive black holes in galaxy mergers. Because of the stringent resolution requirement and the apparent rareness of these small-separation pairs, there are scarce observational constraints on this population, with few confirmed dual SMBHs at $<10$kpc separations at $z>1$. Here we present results from a pilot search for kpc-scale dual quasars selected with Gaia Data release 2 (DR2) astrometry and followed up with Hubble Space Telescope (HST) Wide Field Camera 3 dual-band (F475W and F814W) snapshot imaging. Our targets are quasars primarily selected with the varstrometry technique, i.e., light centroid jitter caused by asynchronous variability from both members in an unresolved quasar pair, supplemented by sub-arcsec pairs already resolved by Gaia DR2. We find an overall high fraction of HST-resolved pairs among the varstrometry-selected quasars (unresolved in Gaia DR2), $sim 30-50%$, increasing toward high redshift ($sim 60-80%$ at $z>1.5$). We discuss the nature of the 43 resolved sub-arcsec pairs based on HST and supplementary data. A substantial fraction ($sim 40%$) of these pairs are likely physical quasar pairs or gravitationally lensed quasars. We also discover a triple quasar candidate and a quadruply lensed quasar, which is among the smallest-separation quadruple lenses. These results provide important guidelines to improve varstrometry selection and follow-up confirmation of $sim$kpc-scale dual SMBHs at high redshift.
We analyze high-resolution (400pc) 220GHz continuum and CO(2-1) ALMA observations of a representative sample of 23 local (z<0.165) ULIRG systems (34 individual nuclei) as part of the Physics of ULIRGs with MUSE and ALMA (PUMA) project. The deconvolved half-light radii of the 220GHz continuum sources are between <60-350 pc (median 90pc). We associate these regions with the regions emitting the bulk of the infrared luminosity. The good agreement, within a factor of 2, between the 220GHz fluxes and the extrapolation of the infrared gray-body, and the small synchrotron and free-free contributions support this assumption. The cold molecular gas emission sizes, r_CO, are 60-700 pc and are similar in advanced mergers and early interacting systems. On average, r_CO are 2.5 times larger than the continuum. We derive L_IR and cold molecular gas surface densities: log Sigma(L_IR)=11.5-14.3 Lsun/kpc^2 and log Sigma(H2)=2.9-4.2 Msun/pc^2. Assuming that the L_IR is produced by star-formation, this corresponds to median Sigma(SFR)=2500 Msun/yr/kpc^2 which would imply extremely short depletion times, <1-15 Myr, and unphysical SF efficiencies >1 for 70% of the sample. Therefore, this favors the presence of obscured AGN that could dominate the L_IR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (r<130 pc) with high mid-IR excess emission found in optically classified AGN; and (b) nuclei following a relation with decreasing mid-IR excess for decreasing r. 60% of the interacting nuclei lie in the low end (<130 pc) of this relation, while only 30% of the advanced mergers do so, suggesting that in the early interaction phases the activity occurs in more compact and obscured regions. About two thirds of the nuclei are above the Eddington limit which is consistent with the detection of massive outflows in local ULIRGs and the potential role of radiation pressure in the launching process.
460 - Philip F. Hopkins 2009
At low Eddington ratio (mdot), two effects make it harder to detect AGN given some selection criteria. First, even with fixed accretion physics, AGN are diluted/less luminous relative to their hosts; the magnitude of this depends on host properties and so on luminosity and redshift. Second, they may transition to a radiatively inefficient state, changing SED shape and dramatically decreasing in optical/IR luminosity. These effects lead to differences in observed AGN samples, even at fixed bolometric luminosity and after correction for obscuration. The true Eddington ratio distribution may depend strongly on luminosity, but this will be seen only in surveys robust to dilution and radiative inefficiency (X-ray or narrow-line samples); selection effects imply that AGN in optical samples will have uniformly high mdot. This also implies that different selection methods yield systems with different hosts: the clustering of faint optical/IR sources will be weaker than that of X-ray sources, and optical/IR Seyferts will reside in more disk-dominated galaxies while X-ray selected Seyferts will preferentially occupy early-type systems. If observed mdot distributions are correct, a large fraction of low-luminosity AGN currently classified as obscured are in fact diluted and/or radiatively inefficient, not obscured by gas or dust. This is equally true if X-ray hardness is used as a proxy for obscuration, since radiatively inefficient SEDs near mdot~0.01 are X-ray hard. These effects can explain most of the claimed luminosity/redshift dependence in the obscured AGN population, with the true obscured fraction as low as 20%.
We present results of our analysis of NuSTAR data of the luminous infrared galaxy Mrk 266, which contains two nuclei, SW and NE, resolved in previous Chandra imaging. Combining with the Chandra data, we intepret the hard X-ray spectrum obtained from a NuSTAR observation as resulting from steeply rising flux from a Compton-thick AGN in the SW nucleus which is very faint in the Chandra band, confirming the previous claim of Mazzarella et al. (2012). This hard X-ray component is dominated by reflection, and its intrinsic 2-10 keV luminosity is likely to be ~1e43 erg/s. Although it is bright in soft X-ray, only moderately absorbed NE nucleus has a 2-10 keV luminosity of 4e41 erg/s, placing it in the low-luminosity AGN class. These results have implications for understanding the detectability and duty cycles of emission from dual AGN in heavily obscured mergers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا