Based upon the kinematics of ten globular clusters, it has recently been claimed that the ultra-diffuse galaxy, NCD 1052-DF2, lacks a significant quantity of dark matter. Dynamical analyses have generally assumed that this galaxy is pressure supported, with the relatively small velocity dispersion of the globular cluster population indicating the deficit of dark matter. However, the presence of a significant rotation of the globular cluster population could substantially modify this conclusion. Here we present the discovery of such a signature of rotation in the kinematics of NGC 1052-DF2s globular clusters, with a velocity amplitude of $sim12.44^{+4.40}_{-5.16}$ km/s, which, through Bayesian model comparison, represents a marginally better fit to the available kinematic data; note that this rotation is distinct from, and approximately perpendicular to, the recently identified rotation of the stellar component of NGC 1052-DF2. Assuming this truly represents an underlying rotation, it is shown that the determined mass depends upon the inclination of the rotational component and, with a moderate inclination, the resultant mass to light ratio can exceed $M/Lsim10$.