Polarized Raman spectra of the epitaxial Ba0.5Sr0.5TiO3 film, bi-color BaTiO3/Ba0.5Sr0.5TiO3 superlattice, and tri-color BaTiO3/Ba0.5Sr0.5TiO3/SrTiO3 superlattice were studied in a broad temperature range of 80-700 K. Based on the temperature dependence of the polar modes we determined the phase transitions temperatures in the studied heterostructures. In the sub-THz frequency range of the Y(XZ)Y spectra, we revealed the coexistence of the Debye-type central peak and soft mode in bi-color BaTiO3/Ba0.5Sr0.5TiO3 superlattice.
The bandgap energy values for the ferroelectric BaTiO3-based solid solutions with isovalent substitution Ba1-x SrxTiO3, BaZrxTi1-xO3 and BaSnxTi1-xO3 were determined using diffuse reflectance spectra. While the corresponding unit cell volume follows Vegards law in accordance with the different ionic radii of the ionic substitutions, the bandgap values depict non-linear compositional dependences for all the solid solutions. The effect is considerably large for BaZrxTi1-xO3 and BaSnxTi1-xO3 solutions, depicting a bandgap linear compositional dependence up to x=0.6, for x>0.6 BaZrxTi1-xO3 compounds present much larger bandgap values than BaSnxTi1-xO3 counterparts. Electronic properties have been investigated through X-ray photoelectron spectroscopy in BaSnxTi1-xO3 compounds, indicating that the Sn 3d and Ti 2p core levels shift against the Ba 3d ones within the whole compositional range with the same energy trend as that observed for the optical bandgap. Since for Ba1-x SrxTiO3 compounds no major bandgap variation is observed, we conclude that the bandgap compositional dependences observed for BaSnxTi1-xO3 compounds and BaZrxTi1-xO3 ones are originated from the structural sensitivity of the O, Ti and Sn or Zr electronic bands involved in the bandgap transition of these compounds. With this work, we underline the reliability of the bandgap determined from diffuse reflectance spectrometry experiments, as a means to non-invasively evaluate the electronic properties of powder materials.
Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition metal oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetoresistance properties of the exchange coupled heterostructures. We further found that the persistence of AFM grains with thermally disordered and reversible AFM order is crucial for achieving highly tunable magnetic properties and multi-level magnetoresistance states. We anticipate that the introduced approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM order at the nanoscale.
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was introduced in to the model calculation to explain experimentally observed behavior of the polarization as a function of planar electric field. The Ez - misfit strain phase diagram of the film is constructed and discussed.
Thermoelectric properties of graphene nanoribbons with periodic edge vacancies and antidot lattice are investigated. The electron-phonon interaction is taken into account in the framework of the Hubbard-Holstein model with the use of the Lang-Firsov unitary transformation scheme. The electron transmission function, the thermopower and the thermoelectric figure of merit are calculated. We have found that the electron-phonon interaction causes a decrease in the peak values of the thermoelectric figure of merit and the shift of the peak positions closer to the center of the bandgap. The effects are more pronounced for the secondary peaks that appear in the structures with periodic antidot.
The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.
E. D. Gorkovaya
,Yu. A. Tikhonov
,V. I. Torgashev
.
(2019)
.
"Properties of the low-frequency phonon spectra of ferroelectric barium titanate-based heterostructures"
.
Igor A Luk'yanchuk
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا