Do you want to publish a course? Click here

The complex geometry of two exceptional flag manifolds

73   0   0.0 ( 0 )
 Added by Daniel Thung
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the complex geometry of two complex five-dimensional Kahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all Kahlerian complex structures was proved by Brieskorn, for the other one we prove it here. We relate the Kahler assumption in Brieskorns theorem to the question of existence of a complex structure on the six-dimensional sphere, and we compute the Chern numbers of all $G_2$-invariant almost complex structures on these manifolds.



rate research

Read More

We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify compact Kahler-Einstein manifolds and Fano manifolds bearing holomorphic GL(2)-geometries. Among the compact Kahler-Einstein manifolds we prove that the only examples bearing holomorphic GL(2)-geometry are those covered by compact complex tori, the three dimensional quadric and those covered by the three dimensional Lie ball (the non compact dual of the quadric).
389 - Andrea Altomani 2007
We compute the Euler-Poincare characteristic of the homogeneous compact manifolds that can be described as minimal orbits for the action of a real form in a complex flag manifold.
We prove that generalised Monge-Ampere equations (a family of equations which includes the inverse Hessian equations like the J-equation, as well as the Monge-Ampere equation) on projective manifolds have smooth solutions if certain intersection numbers are positive. As corollaries of our work, we improve a result of Chen (albeit in the projective case) on the existence of solutions to the J-equation, and prove a conjecture of Szekelyhidi in the projective case on the solvability of inverse Hessian equations. We also prove an equivariant version of our results, albeit under the assumption of uniform positivity. In particular, we can recover existing results on manifolds with large symmetry such as projective toric manifolds.
431 - Paola Piu , Elisabeth Remm 2012
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. We detail for the flag manifold $SO(5)/SO(2)times SO(2) times SO(1)$ what are the conditions for a metric adapted to the $mathbb{Z}_2^2$-symmetric structure to be naturally reductive.
78 - Jirui Guo , Hao Zou 2021
We compute the quantum cohomology of symplectic flag manifolds. Symplectic flag manifolds can be described by non-abelian GLSMs with superpotential. Although the ring relations cannot be directly read off from the equations of motion on the Coulomb branch due to complication introduced by the non-abelian gauge symmetry, it can be shown that they can be extracted from the localization formula in a gauge-invariant form. Our result is general for all symplectic flag manifolds, which reduces to previously established results on symplectic Grassmannians and complete symplectic flag manifolds derived by other means. We also explain why a (0,2) deformation of the GLSM does not give rise to a deformation of the quantum cohomology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا