Divisor functions have attracted the attention of number theorists from Dirichlet to the present day. Here we consider associated divisor functions $c_j^{(r)}(n)$ which for non-negative integers $j, r$ count the number of ways of representing $n$ as an ordered product of $j+r$ factors, of which the first $j$ must be non-trivial, and their natural extension to negative integers $r.$ We give recurrence properties and explicit formulae for these novel arithmetic functions. Specifically, the functions $c_j^{(-j)}(n)$ count, up to a sign, the number of ordered factorisations of $n$ into $j$ square-free non-trivial factors. These functions are related to a modified version of the Mobius function and turn out to play a central role in counting the number of sum systems of given dimensions. par Sum systems are finite collections of finite sets of non-negative integers, of prescribed cardinalities, such that their set sum generates consecutive integers without repetitions. Using a recently established bijection between sum systems and joint ordered factorisations of their component set cardinalities, we prove a formula expressing the number of different sum systems in terms of associated divisor functions.