No Arabic abstract
The paper gives a detailed study of long-time dynamics generated by weakly damped wave equations in bounded 3D domains where the damping exponent depends explicitly on time and may change sign. It is shown that in the case when the non-linearity is superlinear, the considered equation remains dissipative if the weighted mean value of the dissipation rate remains positive and that the conditions of this type are not sufficient in the linear case. Two principally different cases are considered. In the case when this mean is uniform (which corresponds to deterministic dissipation rates), it is shown that the considered system possesses smooth uniform attractors as well as non-autonomous exponential attractors. In the case where the mean is not uniform (which corresponds to the random dissipation rate, for instance, when this dissipation rate is generated by the Bernoulli process), the tempered random attractor is constructed. In contrast to the usual situation, this random attractor is expected to have infinite Hausdorff and fractal dimension. The simplified model example which demonstrates infinite-dimensionality of the random attractor is also presented.
Dissipative wave equations with critical quintic nonlinearity and damping term involving the fractional Laplacian are considered. The additional regularity of energy solutions is established by constructing the new Lyapunov-type functional and based on this, the global well-posedness and dissipativity of the energy solutions as well as the existence of a smooth global and exponential attractors of finite Hausdorff and fractal dimension is verified.
In this paper, we study the following Kazdan-Warner equation with sign-changing prescribed function $h$ begin{align*} -Delta u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}}-1right) end{align*} on a closed Riemann surface whose area is equal to one. The solutions are the critical points of the functional $J_{8pi}$ which is defined by begin{align*} J_{8pi}(u)=frac{1}{16pi}int_{Sigma}| abla u|^2+int_{Sigma}u-lnleft|int_{Sigma}he^{u}right|,quad uin H^1left(Sigmaright). end{align*} We prove the existence of minimizer of $J_{8pi}$ by assuming begin{equation*} Delta ln h^++8pi-2K>0 end{equation*}at each maximum point of $2ln h^++A$, where $K$ is the Gaussian curvature, $h^+$ is the positive part of $h$ and $A$ is the regular part of the Green function. This generalizes the existence result of Ding, Jost, Li and Wang [Asian J. Math. 1(1997), 230-248] to the sign-changing prescribed function case. We are also interested in the blow-up behavior of a sequence $u_{varepsilon}$ of critical points of $J_{8pi-varepsilon}$ with $int_{Sigma}he^{u_{varepsilon}}=1, limlimits_{varepsilonsearrow 0}J_{8pi-varepsilon}left(u_{varepsilon}right)<infty$ and obtain the following identity during the blow-up process begin{equation*} -varepsilon=frac{16pi}{(8pi-varepsilon)h(p_varepsilon)}left[Delta ln h(p_varepsilon)+8pi-2K(p_varepsilon)right]lambda_{varepsilon}e^{-lambda_{varepsilon}}+Oleft(e^{-lambda_{varepsilon}}right), end{equation*}where $p_varepsilon$ and $lambda_varepsilon$ are the maximum point and maximum value of $u_varepsilon$, respectively. Moreover, $p_{varepsilon}$ converges to the blow-up point which is a critical point of the function $2ln h^{+}+A$.
We study the existence of sign-changing solutions to the nonlinear heat equation $partial _t u = Delta u + |u|^alpha u$ on ${mathbb R}^N $, $Nge 3$, with $frac {2} {N-2} < alpha <alpha _0$, where $alpha _0=frac {4} {N-4+2sqrt{ N-1 } }in (frac {2} {N-2}, frac {4} {N-2})$, which are singular at $x=0$ on an interval of time. In particular, for certain $mu >0$ that can be arbitrarily large, we prove that for any $u_0 in mathrm{L} ^infty _{mathrm{loc}} ({mathbb R}^N setminus { 0 }) $ which is bounded at infinity and equals $mu |x|^{- frac {2} {alpha }}$ in a neighborhood of $0$, there exists a local (in time) solution $u$ of the nonlinear heat equation with initial value $u_0$, which is sign-changing, bounded at infinity and has the singularity $beta |x|^{- frac {2} {alpha }}$ at the origin in the sense that for $t>0$, $ |x|^{frac {2} {alpha }} u(t,x) to beta $ as $ |x| to 0$, where $beta = frac {2} {alpha } ( N -2 - frac {2} {alpha } ) $. These solutions in general are neither stationary nor self-similar.
In this paper, we first establish a criterion based on contractive function for the existence of polynomial attractors. This criterion only involves some rather weak compactness associated with the repeated limit inferior and requires no compactness, which makes it suitable for critical cases. Then by this abstract theorem, we verify the existence of a polynomial attractor and estimate its attractive speed for the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity.
We give a detailed study of attractors for measure driven quintic damped wave equations with periodic boundary conditions. This includes uniform energy-to-Strichartz estimates, the existence of uniform attractors in a weak or strong topology in the energy phase space, the possibility to present them as a union of all complete trajectories, further regularity, etc.