Joint constraint on primordial gravitational waves and polarization rotation angle with current CMB polarization data


Abstract in English

Cosmological CPT violation will rotate the polarized direction of CMB photons, convert partial CMB E mode into B mode and vice versa. It will generate non-zero EB, TB spectra and change the EE, BB, TE spectra. This phenomenon gives us a way to detect the CPT-violation signature from CMB observations, and also provides a new mechanism to produce B mode polarization. In this paper, we perform a global analysis on tensor-to-scalar ratio $r$ and polarization rotation angles based on current CMB datasets with both low $ell$ (Planck, BICEP2/Keck Array) and high $ell$ (POLARBEAR, SPTpol, ACTPol). Benefited from the high precision of CMB data, we obtain the isotropic rotation angle $bar{alpha} = -0.01^circ pm 0.37^circ $ at 68% C.L., the variance of the anisotropic rotation angles $C^{alpha}(0)<0.0032,mathrm{rad}^2$, the scale invariant power spectrum $D^{alphaalpha}_{ell in [2, 350]}<4.71times 10^{-5} ,mathrm{rad}^2$ and $r<0.057$ at 95% C.L.. Our result shows that with the polarization rotation effect, the 95% upper limit on $r$ gets tightened by 17%.

Download