Do you want to publish a course? Click here

Convolutions of Totally Positive Distributions with applications to Kernel Density Estimation

64   0   0.0 ( 0 )
 Added by Elina Robeva
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this work we study the estimation of the density of a totally positive random vector. Total positivity of the distribution of a random vector implies a strong form of positive dependence between its coordinates and, in particular, it implies positive association. Since estimating a totally positive density is a non-parametric problem, we take on a (modified) kernel density estimation approach. Our main result is that the sum of scaled standard Gaussian bumps centered at a min-max closed set provably yields a totally positive distribution. Hence, our strategy for producing a totally positive estimator is to form the min-max closure of the set of samples, and output a sum of Gaussian bumps centered at the points in this set. We can frame this sum as a convolution between the uniform distribution on a min-max closed set and a scaled standard Gaussian. We further conjecture that convolving any totally positive density with a standard Gaussian remains totally positive.



rate research

Read More

We study minimax estimation of two-dimensional totally positive distributions. Such distributions pertain to pairs of strongly positively dependent random variables and appear frequently in statistics and probability. In particular, for distributions with $beta$-Holder smooth densities where $beta in (0, 2)$, we observe polynomially faster minimax rates of estimation when, additionally, the total positivity condition is imposed. Moreover, we demonstrate fast algorithms to compute the proposed estimators and corroborate the theoretical rates of estimation by simulation studies.
We present a new adaptive kernel density estimator based on linear diffusion processes. The proposed estimator builds on existing ideas for adaptive smoothing by incorporating information from a pilot density estimate. In addition, we propose a new plug-in bandwidth selection method that is free from the arbitrary normal reference rules used by existing methods. We present simulation examples in which the proposed approach outperforms existing methods in terms of accuracy and reliability.
196 - Salim Bouzebda 2009
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we establish an approximation of the bootstrapped kernel-type density estimator
248 - Hidehiko Kamiya 2017
Elliptically contoured distributions generalize the multivariate normal distributions in such a way that the density generators need not be exponential. However, as the name suggests, elliptically contoured distributions remain to be restricted in that the similar density contours ought to be elliptical. Kamiya, Takemura and Kuriki [Star-shaped distributions and their generalizations, Journal of Statistical Planning and Inference 138 (2008), 3429--3447] proposed star-shaped distributions, for which the density contours are allowed to be boundaries of arbitrary similar star-shaped sets. In the present paper, we propose a nonparametric estimator of the shape of the density contours of star-shaped distributions, and prove its strong consistency with respect to the Hausdorff distance. We illustrate our estimator by simulation.
This paper studies the estimation of the conditional density f (x, $times$) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) $in$ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d. We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا