The large-scale ionization cones in the Galaxy


Abstract in English

There is compelling evidence for a highly energetic Seyfert explosion (10^{56-57} erg) that occurred in the Galactic Centre a few million years ago. The clearest indications are the x-ray/gamma-ray 10 kpc bubbles identified by the Rosat and Fermi satellites. In an earlier paper, we suggested another manifestation of this nuclear activity, i.e. elevated H-alpha emission along a section of the Magellanic Stream due to a burst (or flare) of ionizing radiation from Sgr A*. We now provide further evidence for a powerful flare event: UV absorption line ratios (in particular CIV/CII, SiIV/SiII) observed by the Hubble Space Telescope reveal that some Stream clouds towards both galactic poles are highly ionized by a source capable of producing ionization energies up to at least 50 eV. We show how these are clouds caught in a beam of bipolar, radiative ionization cones from a Seyfert nucleus associated with Sgr A*. In our model, the biconic axis is tilted by about 15 deg from the South Galactic Pole with an opening angle of roughly 60 deg. For the Stream at such large Galactic distances (D > 75 kpc), nuclear activity is a plausible explanation for all of the observed signatures: elevated H-alpha emission and H ionization fraction (X_e > 0.5), enhanced CIV/CII and SiIV/SiII ratios, and high CIV and SiIV column densities. Wind-driven shock cones are ruled out because the Fermi bubbles lose their momentum and energy to the Galactic corona long before reaching the Stream. The nuclear flare event must have had a radiative UV luminosity close to the Eddington limit (f_E ~ 0.1-1). Our time-dependent Seyfert flare models adequately explain the observations and indicate the Seyfert flare event took place T_o = 3.5 +/- 1 Myr ago. The timing estimates are consistent with the mechanical timescales needed to explain the x-ray/gamma-ray bubbles in leptonic jet/wind models (2-8 Myr).

Download