Atomic-Precision Fabrication of Quasi-Full-Space Grain Boundaries in Two-Dimensional Hexagonal Boron Nitride


Abstract in English

Precise control and in-depth understanding of the interfaces is crucial for the functionality-oriented material design with desired properties. Herein, via modifying the long-standing bicrystal strategy, we proposed a novel nanowelding approach to build up interfaces between two-dimensional (2D) materials with atomic precision. This method enabled us, for the first time, to experimentally achieve the quasi-full-parameter-space grain boundaries (GBs) in 2D hexagonal boron nitride (h-BN). It further helps us unravel the long-term controversy and confusion on the registry of GBs in h-BN, including i) discriminate the relative contribution of the strain and chemical energy on the registry of GBs; ii) identify a new dislocation core- Frank partial dislocation and four new anti-phase boundaries; and iii) confirm the universal GB faceting. Our work provides a new paradigm to the exploiting of structural-property correlation of interfaces in 2D materials.

Download