No Arabic abstract
We present results of a search for late-time radio emission and Fast Radio Bursts (FRBs) from a sample of type-I superluminous supernovae (SLSNe-I). We used the Karl G. Jansky Very Large Array to observe ten SLSN-I more than 5 years old at a frequency of 3 GHz. We searched fast-sampled visibilities for FRBs and used the same data to perform a deep imaging search for late-time radio emission expected in models of magnetar-powered supernovae. No FRBs were found. One SLSN-I, PTF10hgi, is detected in deep imaging, corresponding to a luminosity of $1.2times10^{28}$ erg s$^{-1}$. This luminosity, considered with the recent 6 GHz detection of PTF10hgi in Eftekhari et al (2019), supports the interpretation that it is powered by a young, fast-spinning ($sim$ ms spin period) magnetar with $sim$ 15 Msun of partially ionized ejecta. Broadly, our observations are most consistent with SLSNe-I being powered by neutron stars with fast spin periods, although most require more free-free absorption than is inferred for PTF10hgi. We predict that radio observations at higher frequencies or in the near future will detect these systems and begin constraining properties of the young pulsars and their birth environments.
We present the results of 3 GHz radio continuum observations of 23 superluminous supernovae (SLSNe) and their host galaxies by using the Karl G. Jansky Very Large Array conducted 5-21 years after the explosions. The sample consists of 15 Type I and 8 Type II SLSNe at z < 0.3, providing one of the largest sample of SLSNe with late-time radio data. We detected radio emission from one SLSN (PTF10hgi) and 5 hosts with a significance of >5$sigma$. No time variability is found in late-time radio light curves of the radio-detected sources in a timescale of years except for PTF10hgi, whose variability is reported in a separate study. Comparison of star-formation rates (SFRs) derived from the 3 GHz flux densities with those derived from SED modeling based on UV-NIR data shows that four hosts have an excess of radio SFRs, suggesting obscured star formation. Upper limits for undetected hosts and stacked results show that the majority of the SLSN hosts do not have a significant obscured star formation. By using the 3 GHz upper limits, we constrain the parameters for afterglows arising from interaction between initially off-axis jets and circumstellar medium (CSM). We found that the models with higher energies ($E_{rm iso} gtrsim$ several $times 10^{53}$ erg) and CSM densities ($n gtrsim 0.01$ cm$^{-3}$) are excluded, but lower energies or CSM densities are not excluded with the current data. We also constrained the models of pulsar wind nebulae powered by a newly born magnetar for a subsample of SLSNe with model predictions in the literature.
We present the largest and deepest late-time radio and millimeter survey to date of superluminous supernovae (SLSNe) and long duration gamma-ray bursts (LGRBs) to search for associated non-thermal synchrotron emission. Using the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), we observed 43 sources at 6 and 100 GHz on a timescale of $sim 1 - 19$ yr post-explosion. We do not detect radio/mm emission from any of the sources, with the exception of a 6 GHz detection of PTF10hgi (Eftekhari et al. 2019), as well as the detection of 6 GHz emission near the location of the SLSN PTF12dam, which we associate with its host galaxy. We use our data to place constraints on central engine emission due to magnetar wind nebulae and off-axis relativistic jets. We also explore non-relativistic emission from the SN ejecta, and place constraints on obscured star formation in the host galaxies. In addition, we conduct a search for fast radio bursts (FRBs) from some of the sources using VLA Phased-Array observations; no FRBs are detected to a limit of $16$ mJy ($7sigma$; 10 ms duration) in about 40 min on source per event. A comparison to theoretical models suggests that continued radio monitoring may lead to detections of persistent radio emission on timescales of $gtrsim {rm decade}$.
We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2-1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about one minute, for a duration of up to 11 hours after the burst. The data was searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm$^{-3}$, and for pulse widths $w$ over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 {rm Jy ms} (w/1 {rm ms})^{-1/2}$ for any of the 20 GRBs.
Superluminous supernovae (SLSNe) and long gamma ray bursts (LGRBs) have been proposed as progenitors of repeating Fast Radio Bursts (FRBs). In this scenario, bursts originate from the interaction between a young magnetar and its surrounding supernova remnant (SNR). Such a model could explain the repeating, apparently non-Poissonian nature of FRB121102, which appears to display quiescent and active phases. This bursting behaviour is better explained with a Weibull distribution, which includes parametrisation for clustering. We observed 10 SLSNe/LGRBs for 63 hours, looking for repeating FRBs with the Effelsberg-100 m radio telescope, but have not detected any bursts. We scale the burst rate of FRB121102 to an FRB121102-like source inhabiting each of our observed targets, and compare this rate to our upper burst rate limit on a source by source basis. By adopting a fiducial beaming fraction of 0.6, we obtain 99.99% and 83.4% probabilities that at least one, and at least half of our observed sources are beamed towards us respectively. One of our SLSN targets, PTF10hgi, is coincident with a persistent radio source, making it a possible analogue to FRB121102. We performed further observations on this source using the Effelsberg-100~m and Parkes-64~m radio telescopes. Assuming that PTF10hgi contains an FRB121102-like source, the probabilities of not detecting any bursts from a Weibull distribution during our observations are 14% and 16% for Effelsberg and Parkes respectively. We conclude by showing that a survey of many short observations increases burst detection probability for a source with Weibull distributed bursting activity.
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an $E^{-2}$ energy spectrum assumed, which is 0.0021 GeV cm$^{-2}$ per burst for emission timescales up to textasciitilde10$^2$ seconds from the northern hemisphere stacking search.