Resolution of ideals associated to subspace arrangements


Abstract in English

Let $I_1,dots,I_n$ be ideals generated by linear forms in a polynomial ring over an infinite field and let $J = I_1 cdots I_n$. We describe a minimal free resolution of $J$ and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that $J$ has linear quotients. In fact, we do this for a large class of ideals $J_P$, where $P$ is a certain poset ideal associated to the underlying subspace arrangement.

Download