Do you want to publish a course? Click here

RedMaPPer: Evolution and Mass Dependence of the Conditional Luminosity Functions of Red Galaxies in Galaxy Clusters

57   0   0.0 ( 0 )
 Added by Chun-Hao To
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the luminosity distribution, halo mass dependence, and redshift evolution of red galaxies in galaxy clusters using the SDSS Data Release 8 RedMaPPer cluster sample. We propose a simple prescription for the relationship between the luminosity of both central and satellite galaxies and the mass of their host halos, and show that this model is well-fit by the data. Using a larger galaxy cluster sample than previously employed in the literature, we find that the luminosities of central galaxies scale as $langle log L rangle propto A_L log (M_{200b})$, with $A_L=0.39pm0.04$, and that the scatter of the central--galaxy luminosity at fixed $M_{200b}$ ( $sigma_{log L|M}$) is $0.23 ^{+0.05}_{-0.04}$ dex, with the error bar including systematics due to miscentering of the cluster finder, photometry, and photometric redshift estimation. Our data prefers a positive correlation between the luminosity of central galaxies and the observed richness of clusters at a fixed halo mass, with an effective correlation coefficient $d_{rm{eff}}=0.36^{+0.17}_{-0.16}$. The characteristic luminosity of satellites becomes dimmer from $z=0.3$ to $z=0.1$ by $sim 20%$ after accounting for passive evolution. We estimate the fraction of galaxy clusters where the brightest galaxy is not the central to be $P_{rm{BNC}} sim 20%$. We discuss implications of these findings in the context of galaxy evolution and the galaxy--halo connection.



rate research

Read More

78 - Xiangcheng Ma 2017
We present a suite of cosmological zoom-in simulations at z>5 from the Feedback In Realistic Environments project, spanning a halo mass range M_halo~10^8-10^12 M_sun at z=5. We predict the stellar mass-halo mass relation, stellar mass function, and luminosity function in several bands from z=5-12. The median stellar mass-halo mass relation does not evolve strongly at z=5-12. The faint-end slope of the luminosity function steepens with increasing redshift, as inherited from the halo mass function at these redshifts. Below z~6, the stellar mass function and ultraviolet (UV) luminosity function slightly flatten below M_star~10^4.5 M_sun (fainter than M_1500~-12), owing to the fact that star formation in low-mass halos is suppressed by the ionizing background by the end of reionization. Such flattening does not appear at higher redshifts. We provide redshift-dependent fitting functions for the SFR-M_halo, SFR-M_star, and broad-band magnitude-stellar mass relations. We derive the star formation rate density and stellar mass density at z=5-12 and show that the contribution from very faint galaxies becomes more important at z>8. Furthermore, we find that the decline in the z~6 UV luminosity function brighter than M_1500~-20 is largely due to dust attenuation. Approximately 37% (54%) of the UV luminosity from galaxies brighter than M_1500=-13 (-17) is obscured by dust at z~6. Our results broadly agree with current data and can be tested by future observations.
469 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-defined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
The main goal of this study is to investigate the LF of a sample of 142 X-ray selected clusters, with spectroscopic redshift confirmation and a well defined selection function, spanning a wide redshift and mass range, and to test the LF dependence on cluster global properties, in a homogeneous and unbiased way. Our study is based on the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) photometric galaxy catalogue,associated with photometric redshifts. We constructed LFs inside a scaled radius using a selection in photometric redshift around the cluster spectroscopic redshift in order to reduce projection effects. The width of the photometric redshift selection was carefully determined to avoid biasing the LF and depended on both the cluster redshift and the galaxy magnitudes. The purity was then enhanced by applying a precise background subtraction. We constructed composite luminosity functions (CLFs) by stacking the individual LFs and studied their evolution with redshift and richness, analysing separately the brightest cluster galaxy (BCG) and non-BCG members. We fitted the dependences of the CLFs and BCG distributions parameters with redshift and richness conjointly in order to distinguish between these two effects. We find that the usual photometric redshift selection methods can bias the LF estimate if the redshift and magnitude dependence of the photometric redshift quality is not taken into account. Our main findings concerning the evolution of the galaxy luminosity distribution with redshift and richness are that, in the inner region of clusters and in the redshift-mass range we probe (about $0<z<1$ and $10^{13} M_{odot}<M_{500}<5times10^{14}M_{odot}$), the bright part of the LF (BCG excluded) does not depend much on mass or redshift except for its amplitude, whereas the BCG luminosity increases both with redshift and richness, and its scatter decreases with redshift.
Using V band photometry of the WINGS survey, we derive galaxy luminosity functions (LF) in nearby clusters. This sample is complete down to Mv=-15.15, and it is homogeneous, thus allowing the study of an unbiased sample of clusters with different characteristics. We constructed the photometric LF for 72 out of the original 76 WINGS clusters, excluding only those without a velocity dispersion estimate. For each cluster we obtained the LF for galaxies in a region of radius=0.5 x r200, and fitted them with single and double Schechters functions. We also derive the composite LF for the entire sample, and those pertaining to different morphological classes. Finally we derive the spectroscopic cumulative LF for 2009 galaxies that are cluster members. The double Schechter fit parameters are neither correlated with the cluster velocity dispersion, nor with the X-ray luminosity. Our median values of the Schechters fit slope are, on average, in agreement with measurements of nearby clusters, but are less steep that those derived from large surveys, such as the SDSS. Early--type galaxies outnumber late-types at all magnitudes, but both early and late types contribute equally to the faint end of the LF. Finally, the spectroscopic LF is in excellent agreement with the ones derived for A2199, A85 and Virgo, and with the photometric one at the bright magnitudes (where both are available). There is a large spread in the LF of different clusters. However, this spread is not caused by correlation of the LF shape with cluster characteristics such as X--ray luminosity or velocity dispersions. The faint end is flatter than what previously derived (alpha_f=-1.7) at odds with what predicted from numerical simulations.
We use multi-wavelength data from the Galaxy and Mass Assembly (GAMA) survey to explore the cause of red optical colours in nearby (0.002<z<0.06) spiral galaxies. We show that the colours of red spiral galaxies are a direct consequence of some environment-related mechanism(s) which has removed dust and gas, leading to a lower star formation rate. We conclude that this process acts on long timescales (several Gyr) due to a lack of morphological transformation associated with the transition in optical colour. The sSFR and dust-to-stellar mass ratio of red spiral galaxies is found to be statistically lower than blue spiral galaxies. On the other hand, red spirals are on average $0.9$ dex more massive, and reside in environments 2.6 times denser than their blue counterparts. We find no evidence of excessive nuclear activity, or higher inclination angles to support these as the major causes for the red optical colours seen in >= 47% of all spirals in our sample. Furthermore, for a small subsample of our spiral galaxies which are detected in HI, we find that the SFR of gas-rich red spiral galaxies is lower by ~1 dex than their blue counterparts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا