No Arabic abstract
Recent collapses of many fisheries across the globe have challenged the mathematical approach to these systems through classic bioeconomic models. Decimated populations did not recover as fast as predicted by these models and depensatory effects were introduced to better fit the dynamics at low population abundances. Alternative to depensation, modeling captures by non-linear harvesting functions produces equivalent outcomes at small abundances, and the dynamics undergoes a bifurcation leading to population collapse and recovery once catching efforts are above or below certain thresholds, respectively. The time that a population takes to undergo these transitions has been mostly overlooked in bioeconomic contexts, though. In this work we quantify analytically and numerically the times associated to these collapse and recovery transitions in a model incorporating non-linear harvesting and immigration in the presence and absence of demographic stochasticity. Counterintuitively, although species at low abundances are prone to extinction due to demographic stochasticity, our results show that stochastic collapse and recovery times are upper bounded by their deterministic estimates. This occurs over the full range of immigration rates. Our work may have relevant quantitative implications in the context of fishery management and rebuilding.
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known deterministic evolution equations widely employed in population ecology. The mean-time to extinction is in general obtained by the Wentzel-Kramers-Brillouin (WKB) approximation for populations with strong and weak Allee effects. An exact solution for the mean time to extinction can be found via a recursive equation for special cases of the stochastic dynamics. We study the conditions for the validity of the WKB solution and analyze the boundary between the weak and strong Allee effect by comparing exact solutions with numerical simulations.
We consider non-demographic noise in the form of uncertainty in the reaction step size, and reveal a dramatic effect this noise may have on the stability of self-regulating populations. Employing the reaction scheme mA->kA, but allowing, e.g., the product number k to be a-priori unknown and sampled from a given distribution, we show that such non-demographic noise can greatly reduce the populations extinction risk compared to the fixed k case. Our analysis is tested against numerical simulations, and by using empirical data of different species, we argue that certain distributions may be more evolutionary beneficial than others.
Inference with population genetic data usually treats the population pedigree as a nuisance parameter, the unobserved product of a past history of random mating. However, the history of genetic relationships in a given population is a fixed, unobserved object, and so an alternative approach is to treat this network of relationships as a complex object we wish to learn about, by observing how genomes have been noisily passed down through it. This paper explores this point of view, showing how to translate questions about population genetic data into calculations with a Poisson process of mutations on all ancestral genomes. This method is applied to give a robust interpretation to the $f_4$ statistic used to identify admixture, and to design a new statistic that measures covariances in mean times to most recent common ancestor between two pairs of sequences. The method more generally interprets population genetic statistics in terms of sums of specific functions over ancestral genomes, thereby providing concrete, broadly interpretable interpretations for these statistics. This provides a method for describing demographic history without simplified demographic models. More generally, it brings into focus the population pedigree, which is averaged over in model-based demographic inference.
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hides the fact that transmission is stochastic, is dominated by a small number of individuals, and is driven by super-spreading events (SSEs). The distinct transmission features, such as high stochasticity under low prevalence, and the central role played by SSEs on transmission dynamics, should not be overlooked. Many explosive SSEs have occurred in indoor settings stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family gatherings, parties and night clubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity that outbreak can be effectively contained with targeted interventions to eliminate SSEs. Here, we describe the potential types of SSEs, how they influence transmission, and give recommendations for control of SARS-CoV-2.
We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional lattice. Individuals are assigned inheritable predation efficiencies; quenched randomness in the spatially varying reaction rates serves as environmental noise. We find that environmental variability enhances the population densities of both predators and prey while demographic variability leads to essentially neutral optimization.