No Arabic abstract
Motivated by the realizability problem for principal tropical divisors with a fixed ramification profile, we explore the tropical geometry of the double ramification locus in $mathcal{M}_{g,n}$.There are two ways to define a tropical analogue of the double ramification locus: one as a locus of principal divisors, the other as a locus of finite effective ramified covers of a tree. We show that both loci admit a structure of a generalized cone complex in $M_{g,n}^{trop}$, with the latter contained in the former. We prove that the locus of principal divisors has cones of codimension zero in $M_{g,n}^{trop}$, while the locus of ramified covers has the expected codimension $g$. This solves the deformation-theoretic part of the realizability problem for principal divisors, reducing it to the so-called Hurwitz existence problem for covers of a fixed ramification type.
Let X be a nonsingular projective algebraic variety, and let S be a line bundle on X. Let A = (a_1,..., a_n) be a vector of integers. Consider a map f from a pointed curve (C,x_1,...,x_n) to X satisfying the following condition: the line bundle f*(S) has a meromorphic section with zeroes and poles exactly at the marked points x_i with orders prescribed by the integers a_i. A compactification of the space of maps based upon the above condition is given by the moduli space of stable maps to rubber over X. The main result of the paper is an explicit formula (in tautological classes) for the push-forward of the virtual fundamental class of the moduli space of stable maps to rubber over X via the forgetful morphism to the moduli space of stable maps to X. In case X is a point, the result here specializes to Pixtons formula for the double ramification cycle. Applications of the new formula, viewed as calculating double ramification cycles with target X, are given.
Curves of genus g which admit a map to CP1 with specified ramification profile mu over 0 and nu over infinity define a double ramification cycle DR_g(mu,nu) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves. The cycle DR_g(mu,nu) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for DR_g(mu,nu) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hains formula in the compact type case. When mu and nu are both empty, the formula for double ramification cycles expresses the top Chern class lambda_g of the Hodge bundle of the moduli space of stable genus g curves as a push-forward of tautological classes supported on the divisor of nonseparating nodes. Applications to Hodge integral calculations are given.
We explain a general construction of double covers of quadratic degeneracy loci and Lagrangian intersection loci based on reflexive sheaves. We relate the double covers of quadratic degeneracy loci to the Stein factorizations of the relative Hilbert schemes of linear spaces of the corresponding quadric fibrations. We give a criterion for these double covers to be nonsingular. As applications of these results, we show that the double covers of the EPW sextics obtained by our construction give OGradys double EPW sextics and that an analogous construction gives Iliev-Kapustka-Kapustka-Ranestads EPW cubes.
We study the ramification divisors of projections of a smooth projective variety onto a linear subspace of the same dimension. We prove that the ramification divisors vary in a maximal dimensional family for a large class of varieties. Going further, we study the map that associates to a linear projection its ramification divisor. We show that this map is dominant for most (but not all!) varieties of minimal degree, using (linked) limit linear series of higher rank. We find the degree of this map in some cases, extending the classical appearance of Catalan numbers in the geometry of rational normal curves, and give a geometric explanation of its fibers in terms of torsion points of naturally occurring elliptic curves in the case of the Veronese surface and the quartic rational surface scroll.
In this paper, we study the interplay between tropical and analytic geometry for closed subschemes of toric varieties. Let $K$ be a complete non-Archimedean field, and let $X$ be a closed subscheme of a toric variety over $K$. We define the tropical skeleton of $X$ as the subset of the associated Berkovich space $X^{rm an}$ which collects all Shilov boundary points in the fibers of the Kajiwara--Payne tropicalization map. We develop polyhedral criteria for limit points to belong to the tropical skeleton, and for the tropical skeleton to be closed. We apply the limit point criteria to the question of continuity of the canonical section of the tropicalization map on the multiplicity-one locus. This map is known to be continuous on all torus orbits; we prove criteria for continuity when crossing torus orbits. When $X$ is schon and defined over a discretely valued field, we show that the tropical skeleton coincides with a skeleton of a strictly semistable pair, and is naturally isomorphic to the parameterizing complex of Helm--Katz.