We present Gridap, a new scientific software library for the numerical approximation of partial differential equations (PDEs) using grid-based approximations. Gridap is an open-source software project exclusively written in the Julia programming language. The main motivation behind the development of this library is to provide an easy-to-use framework for the development of complex PDE solvers in a dynamically typed style without sacrificing the performance of statically typed languages. This work is a tutorial-driven user guide to the library. It covers some popular linear and nonlinear PDE systems for scalar and vector fields, single and multi-field problems, conforming and nonconforming finite element discretizations, on structured and unstructured meshes of simplices and hexahedra.