No Arabic abstract
Neutron diffraction with static and pulsed magnetic fields is used to directly probe the magnetic structures in LiNiPO$_4$ up to 25T and 42T, respectively. By combining these results with magnetometry and electric polarization measurements under pulsed fields, the magnetic and magnetoelectric phases are investigated up to 56T applied along the easy $c$-axis. In addition to the already known transitions at lower fields, three new ones are reported at 37.6, 39.4 and 54T. Ordering vectors are identified with ${bf Q}_{mathrm{VI}}$ = (0, 1/3, 0) in the interval 37.6--39.4T and ${bf Q}_{mathrm{VII}}$ = (0, 0, 0) in the interval 39.4-54T. A quadratic magnetoelectric effect is discovered in the ${bf Q}_{mathrm{VII}}$ = (0, 0, 0) phase and the field-dependence of the induced electric polarization is described using a simple mean-field model. The observed magnetic structure and magnetoelectric tensor elements point to a change in the lattice symmetry in this phase. We speculate on the possible physical mechanism responsible for the magnetoelectric effect in LiNiPO4.
The experimental studies of magnetoelectric effects in pulse magnetic field up to 250 kOe and their theoretical analysis on the basis of magnetic symmetry consideration are carried out. It is shown that the nonvanishing components of quadratic magnetoelectric effect tensor corresponding to the electric polarization along b- and c-axes point out the triclinic distortion of the crystal symmetry. Anomalous temperature dependence of magnetically induced polarization Pa(Hb) testifies to the magnetically induced pyroelectric effect. The torque curves measurements show the deflection of the spin orientation from the b-axis at 9 degrees of arc.
Inelastic neutron scattering (INS) experiments were performed to investigate the spin dynamics in magnetoelectric effect (ME) LiCoPO$_4$ single crystals. Weak dispersion was detected in the magnetic excitation spectra along the three principal crystallographic axes measured around the (0 1 0) magnetic reflection. Analysis of the data using linear spin-wave theory indicate that single-ion anisotropy in LiCoPO$_4$ is as important as the strongest nearest-neighbor exchange coupling. Our results suggest that Co$^{2+}$ single-ion anisotropy plays an important role in the spin dynamics of LiCoPO$_4$ and must be taken into account in understanding its physical properties. High resolution INS measurements reveal an anomalous low energy excitation that we hypothesize may be related to the magnetoelectric effect of LiCoPO$_4$.
The magnetic phase diagram of magnetoelectric LiCoPO$_4$ is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic $b$-axis. For fields greater than 11.9T the magnetic unit cell triples in size with propagation vector Q = (0, 1/3, 0). A magnetized elliptic cycloid is formed with spins in the $(b,c)$-plane and the major axis oriented along $b$. Such a structure allows for the magnetoelectric effect with an electric polarization along $c$ induced by magnetic fields applied along $b$. Intriguingly, additional ordering vectors Q $approx$ (0, 1/4, 0) and Q $approx$ (0, 1/2, 0) appear for increasing fields in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5-21.0T, the propagation vector Q = (0, 1/3, 0) remains but the spins orient differently compared to the cycloid phase. Above 21.0T and up until saturation a commensurate magnetic structure exists with a ferromagnetic component along $b$ and an antiferromagnetic component along $c$.
We present a study of terahertz frequency magnetoelectric effect in ferrimagnetic pyroelectric CaBaCo$_4$O$_7$ and its Ni-doped variants. The terahertz absorption spectrum of these materials consists of spin excitations and low-frequency infrared-active phonons. We studied the magnetic-field-induced changes in the terahertz refractive index and absorption in magnetic fields up to 17 T. We find that the magnetic field modulates the strength of infrared-active optical phonons near 1.2 and 1.6 THz. We use the Lorentz model of the dielectric function to analyze the measured magnetic-field dependence of the refractive index and absorption. We propose that most of the magnetoelectric effect is contributed by the optical phonons near 1.6 THz and higher-frequency resonances. Our experimental results can be used to construct and validate more detailed theoretical descriptions of magnetoelectricity in CaBaCo$_{4-x}$Ni$_x$O$_7$.
Magnetic structures are investigated by means of neutron diffraction to shine a light on the intricate details that are believed to be key to understanding the magnetoelectric effect in LiCoPO$_4$ . At zero field, a spontaneous spin canting of $varphi = 7(1)^{circ}$ is found. The spins tilt away from the easy $b$-axis toward $c$. Symmetry considerations lead to the magnetic point group $m_z$, which is consistent with the previously observed magnetoelectric tensor form and weak ferromagnetic moment along $b$. For magnetic fields applied along $a$, the induced ferromagnetic moment couples via the Dzyaloshinskii-Moriya interaction to yield an additional field-induced spin canting. An upper limit to the size of the interaction is estimated from the canting angle.