Counting locally flat-foldable origami configurations via 3-coloring graphs


Abstract in English

Origami, where two-dimensional sheets are folded into complex structures, is proving to be rich with combinatorial and geometric structure, most of which remains to be fully understood. In this paper we consider emph{flat origami}, where the sheet of material is folded into a two-dimensional object, and consider the mountain (convex) and valley (concave) creases made by such foldings, called a emph{MV assignment} of the crease pattern. We establish a method to, given a flat-foldable crease pattern $C$ under certain conditions, create a planar graph $C^*$ whose 3-colorings are in one-to-one correspondence with the locally-valid MV assignments of $C$. This reduces the general, unsolved problem of enumerating locally-valid MV assignments to the enumeration of 3-colorings of graphs.

Download