Do you want to publish a course? Click here

Plasmons and screening in finite-bandwidth 2D electron gas

88   0   0.0 ( 0 )
 Added by Kaveh Khaliji
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamical and nonlocal dielectric function of a two-dimensional electron gas (2DEG) with finite energy bandwidth is computed within random-phase approximation. For large bandwidth, the plasmon dispersion has two separate branches at small and large momenta. The large momenta branch exhibits negative quasi-flat dispersion. The two branches merge with decreasing bandwidth. We discuss how the maximum energy plasmon mode which resides at energies larger than all particle-hole continuum can potentially open a route to low-loss plasmons. Moreover, we discuss the bandwidth effects on the static screening of the charged and magnetic impurities.



rate research

Read More

Semiconductor interfaces, such as these existing in multilayer structures (e.g., quantum wells (QWs)), are interesting because of their ability to form 2D electron gases (2DEGs), in which charge carriers behave completely differently than they do in the bulk. As an example, in the presence of a strong magnetic field, the Landau quantization of electronic levels in the 2DEG results in the quantum Hall effect (QHE), in which Hall conductance is quantized. This chapter is devoted to the properties of such 2DEGs in multilayer structures made of compound semiconductors belonging to the class of Se- and Te-based chalcogenides. In particular, we will also discuss the interesting question of how the QHE phenomenon is affected by the giant Zeeman splitting characteristic of II-VI-based diluted magnetic semiconductors (DMSs), especially when the Zeeman splitting and Landau splitting become comparable. We will also shortly discuss novel topological phases in chalcogenide multilayers.
Spin-orbit coupling induced anisotropies of plasmon dynamics are investigated in two-dimensional semiconductor structures. The interplay of the linear Bychkov-Rashba and Dresselhaus spin-orbit interactions drastically affects the plasmon spectrum: the dynamical structure factor exhibits variations over several decades, prohibiting plasmon propagation in specific directions. While this plasmon filtering makes the presence of spin-orbit coupling in plasmon dynamics observable, it also offers a control tool for plasmonic devices. Remarkably, if the strengths of the two interactions are equal, not only the anisotropy, but all the traces of the linear spin-orbit coupling in the collective response disappear.
Collective charge-density modes (plasmons) of the clean two-dimensional unpolarized electron gas are stable, for momentum conservation prevents them from decaying into single-particle excitations. Collective spin-density modes (spin plasmons) possess no similar protection and rapidly decay by production of electron-hole pairs. Nevertheless, if the electron gas has a sufficiently high degree of spin polarization ($P>1/7$, where $P$ is the ratio of the equilibrium spin density and the total electron density, for a parabolic single-particle spectrum) we find that a long-lived spin-plasmon---a collective mode in which the densities of up and down spins oscillate with opposite phases---can exist within a pseudo gap of the single-particle excitation spectrum. The ensuing collectivization of the spin excitation spectrum is quite remarkable and should be directly visible in Raman scattering experiments. The predicted mode could dramatically improve the efficiency of coupling between spin-wave-generating devices, such as spin-torque oscillators.
We describe here recent work on the electronic properties, magnetoexcitons and valley polarised electron gas in 2D crystals. Among 2D crystals, monolayer $MoS_2$ has attracted significant attention as a direct-gap 2D semiconductor analogue of graphene. The crystal structure of monolayer $MoS_2$ breaks inversion symmetry and results in K valley selection rules allowing to address individual valleys optically. Additionally, the band nesting near Q points is responsible for enhancing the optical response of $MoS_2$.We show that at low energies the electronic structure of $MoS_2$ is well approximated by the massive Dirac Fermion model. We focus on the effect of magnetic field on optical properties of $MoS_2$. We discuss the Landau level structure of massive Dirac fermions in the two non-equivalent valleys and resulting valley Zeeman splitting. The effects of electron-electron interaction on the valley Zeeman splitting and on the magneto-exciton spectrum are described. We show the changes in the absorption spectrum as the self-energy, electron-hole exchange and correlation effects are included. Finally, we describe the valley-polarised electron gas in $WS_2$ and its optical signature in finite magnetic fields.
Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons, are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation velocity of surface plasmons is suppressed significantly through a partial screening of the electron charge by the interface states. On the basis of analytical calculations of the electron lifetime determined by the screened Coulomb interaction, we show that the screening effect gives results in agreement with those of a recent experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا