We prove that geometric intersections between Weinstein handles induce algebraic relations in the wrapped Fukaya category, which we use to study the Grothendieck group. We produce a surjective map from middle-dimensional singular cohomology to the Grothendieck group, show that the geometric acceleration map to symplectic cohomology factors through the categorical Dennis trace map, and introduce a Viterbo functor for $C^0$-close Weinstein hypersurfaces, which gives an obstruction for Legendrians to be $C^0$-close. We show that symplectic flexibility is a geometric manifestation of Thomasons correspondence between split-generating subcategories and subgroups of the Grothendieck group, which we use to upgrade Abouzaids split-generation criterion to a generation criterion for Weinstein domains. Thomasons theorem produces exotic presentations for certain categories and we give geometric analogs: exotic Weinstein presentations for standard cotangent bundles and Legendrians whose Chekanov-Eliashberg algebras are not quasi-isomorphic but are derived Morita equivalent.