Do you want to publish a course? Click here

A CCG-based Compositional Semantics and Inference System for Comparatives

75   0   0.0 ( 0 )
 Added by Izumi Haruta
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Comparative constructions play an important role in natural language inference. However, attempts to study semantic representations and logical inferences for comparatives from the computational perspective are not well developed, due to the complexity of their syntactic structures and inference patterns. In this study, using a framework based on Combinatory Categorial Grammar (CCG), we present a compositional semantics that maps various comparative constructions in English to semantic representations and introduces an inference system that effectively handles logical inference with comparatives, including those involving numeral adjectives, antonyms, and quantification. We evaluate the performance of our system on the FraCaS test suite and show that the system can handle a variety of complex logical inferences with comparatives.



rate research

Read More

In formal semantics, there are two well-developed semantic frameworks: event semantics, which treats verbs and adverbial modifiers using the notion of event, and degree semantics, which analyzes adjectives and comparatives using the notion of degree. However, it is not obvious whether these frameworks can be combined to handle cases in which the phenomena in question are interacting with each other. Here, we study this issue by focusing on natural language inference (NLI). We implement a logic-based NLI system that combines event semantics and degree semantics and their interaction with lexical knowledge. We evaluate the system on various NLI datasets containing linguistically challenging problems. The results show that the system achieves high accuracies on these datasets in comparison with previous logic-based systems and deep-learning-based systems. This suggests that the two semantic frameworks can be combined consistently to handle various combinations of linguistic phenomena without compromising the advantage of either framework.
Constraint Handling Rules (CHR) are a committed-choice declarative language which has been designed for writing constraint solvers. A CHR program consists of multi-headed guarded rules which allow one to rewrite constraints into simpler ones until a solved form is reached. CHR has received a considerable attention, both from the practical and from the theoretical side. Nevertheless, due the use of multi-headed clauses, there are several aspects of the CHR semantics which have not been clarified yet. In particular, no compositional semantics for CHR has been defined so far. In this paper we introduce a fix-point semantics which characterizes the input/output behavior of a CHR program and which is and-compositional, that is, which allows to retrieve the semantics of a conjunctive query from the semantics of its components. Such a semantics can be used as a basis to define incremental and modular analysis and verification tools.
129 - Xisen Jin , Zhongyu Wei , Junyi Du 2019
The impressive performance of neural networks on natural language processing tasks attributes to their ability to model complicated word and phrase compositions. To explain how the model handles semantic compositions, we study hierarchical explanation of neural network predictions. We identify non-additivity and context independent importance attributions within hierarchies as two desirable properties for highlighting word and phrase compositions. We show some prior efforts on hierarchical explanations, e.g. contextual decomposition, do not satisfy the desired properties mathematically, leading to inconsistent explanation quality in different models. In this paper, we start by proposing a formal and general way to quantify the importance of each word and phrase. Following the formulation, we propose Sampling and Contextual Decomposition (SCD) algorithm and Sampling and Occlusion (SOC) algorithm. Human and metrics evaluation on both LSTM models and BERT Transformer models on multiple datasets show that our algorithms outperform prior hierarchical explanation algorithms. Our algorithms help to visualize semantic composition captured by models, extract classification rules and improve human trust of models. Project page: https://inklab.usc.edu/hiexpl/
We propose a framework to model an operational conversational negation by applying worldly context (prior knowledge) to logical negation in compositional distributional semantics. Given a word, our framework can create its negation that is similar to how humans perceive negation. The framework corrects logical negation to weight meanings closer in the entailment hierarchy more than meanings further apart. The proposed framework is flexible to accommodate different choices of logical negations, compositions, and worldly context generation. In particular, we propose and motivate a new logical negation using matrix inverse. We validate the sensibility of our conversational negation framework by performing experiments, leveraging density matrices to encode graded entailment information. We conclude that the combination of subtraction negation and phaser in the basis of the negated word yields the highest Pearson correlation of 0.635 with human ratings.
600 - Edward Grefenstette 2013
This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا