No Arabic abstract
We show that hybrid Dirac and Weyl semimetals can be realized in a three-dimensional Luttinger semimetal with quadratic band touching (QBT). We illustrate this using periodic kicking scheme. In particular, we focus on a momentum-dependent drivings (nonuniform driving) and demonstrate the realization of various hybrid Dirac and Weyl semimetals. We identify a unique hybrid dispersion Dirac semimetal with two nodes, where one of the nodes is linear while the other is dispersed quadraticlly. Next, we show that by tilting QBT via periodic driving and in the presence of an external magnetic field, one can realize various single/double hybrid Weyl semimetals depending on the strength of external field. Finally, we note that in principle, phases that are found in this work could also be realized by employing the appropriate electronic interactions.
We study the interaction between elliptically polarized light and a three-dimensional Luttinger semimetal with quadratic band touching using Floquet theory. In the absence of light, the touching bands can have the same or the opposite signs of the curvature; in each case, we show that simply tuning the light parameters allows us to create a zoo of Weyl semimetallic phases. In particular, we find that double and single Weyl points can coexist at different energies, and they can be tuned to be type I or type II. We also find an unusual phase transition, in which a pair of Weyl nodes form at finite momentum and disappear off to infinity. Considering the broad tunability of light and abundance of materials described by the Luttinger Hamiltonian, such as certain pyrochlore iridates, half-Heuslers and zinc-blende semiconductors, we believe this work can lay the foundation for creating Weyl semimetals in the lab and dynamically tuning between them.
We report on the dynamical formation of exceptional degeneracies in basic correlation functions of non-integrable one- and two-dimensional systems quenched to the vicinity of a critical point. Remarkably, fine-tuned semi-metallic points in the phase diagram of the considered systems are thereby promoted to topologically robust non-Hermitian (NH) nodal phases emerging in the coherent long-time evolution of a dynamically equilibrating system. In the framework of non-equilibrium Greens function methods within the conserving second Born approximation, we predict observable signatures of these novel NH nodal phases in simple spectral functions as well as in the time-evolution of momentum distribution functions.
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L_0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behaviour as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.
We study sound in a single-channel one-dimensional quantum liquid. In contrast to classical fluids, instead of a single sound mode we find two modes of density oscillations. The speeds at which these two sound modes propagate are nearly equal, with the difference that scales linearly with the small temperature of the system. The two sound modes emerge as hybrids of the first and second sounds, and combine oscillations of both density and entropy of the liquid.
Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP (maximum of 800 microV K-1 at 9 T, 109 K) exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. The Nernst effect has a pronounced maximum near T_M=90 +/- 20 K=mu_0/kB (mu_0 is chemical potential at T=0 K). A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at T>=TM, driven by charge neutrality and Dirac band symmetry. Temperature and field dependences of the Nernst effect, an even function of the charge polarity, result from the intrinsically bipolar nature of the Weyl fermions. Through this study, we offer an understanding of the temperature dependence of the position of the electrochemical potential vis-a-vis the Weyl point, and we show a direct connection between topology and the Nernst effect, a potentially robust experimental tool for investigating topological states and the chiral anomaly.