No Arabic abstract
The goal of lifetime clustering is to develop an inductive model that maps subjects into $K$ clusters according to their underlying (unobserved) lifetime distribution. We introduce a neural-network based lifetime clustering model that can find cluster assignments by directly maximizing the divergence between the empirical lifetime distributions of the clusters. Accordingly, we define a novel clustering loss function over the lifetime distributions (of entire clusters) based on a tight upper bound of the two-sample Kuiper test p-value. The resultant model is robust to the modeling issues associated with the unobservability of termination signals, and does not assume proportional hazards. Our results in real and synthetic datasets show significantly better lifetime clusters (as evaluated by C-index, Brier Score, Logrank score and adjusted Rand index) as compared to competing approaches.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.
This paper develops a novel graph convolutional network (GCN) framework for fault location in power distribution networks. The proposed approach integrates multiple measurements at different buses while taking system topology into account. The effectiveness of the GCN model is corroborated by the IEEE 123 bus benchmark system. Simulation results show that the GCN model significantly outperforms other widely-used machine learning schemes with very high fault location accuracy. In addition, the proposed approach is robust to measurement noise and data loss errors. Data visualization results of two competing neural networks are presented to explore the mechanism of GCNs superior performance. A data augmentation procedure is proposed to increase the robustness of the model under various levels of noise and data loss errors. Further experiments show that the model can adapt to topology changes of distribution networks and perform well with a limited number of measured buses.
We propose a novel deep learning architecture suitable for the prediction of investor interest for a given asset in a given time frame. This architecture performs both investor clustering and modelling at the same time. We first verify its superior performance on a synthetic scenario inspired by real data and then apply it to two real-world databases, a publicly available dataset about the position of investors in Spanish stock market and proprietary data from BNP Paribas Corporate and Institutional Banking.
In this paper, we propose a novel framework for Deep Clustering and multi-manifold Representation Learning (DCRL) that preserves the geometric structure of data. In the proposed framework, manifold clustering is done in the latent space guided by a clustering loss. To overcome the problem that clustering-oriented losses may deteriorate the geometric structure of embeddings in the latent space, an isometric loss is proposed for preserving intra-manifold structure locally and a ranking loss for inter-manifold structure globally. Experimental results on various datasets show that DCRL leads to performances comparable to current state-of-the-art deep clustering algorithms, yet exhibits superior performance for manifold representation. Our results also demonstrate the importance and effectiveness of the proposed losses in preserving geometric structure in terms of visualization and performance metrics.
Multiple imputation (MI) is the state-of-the-art approach for dealing with missing data arising from non-response in sample surveys. Multiple imputation by chained equations (MICE) is the most widely used MI method, but it lacks theoretical foundation and is computationally intensive. Recently, MI methods based on deep learning models have been developed with encouraging results in small studies. However, there has been limited research on systematically evaluating their performance in realistic settings comparing to MICE, particularly in large-scale surveys. This paper provides a general framework for using simulations based on real survey data and several performance metrics to compare MI methods. We conduct extensive simulation studies based on the American Community Survey data to compare repeated sampling properties of four machine learning based MI methods: MICE with classification trees, MICE with random forests, generative adversarial imputation network, and multiple imputation using denoising autoencoders. We find the deep learning based MI methods dominate MICE in terms of computational time; however, MICE with classification trees consistently outperforms the deep learning MI methods in terms of bias, mean squared error, and coverage under a range of realistic settings.