Rigid connections on $mathbb{P}^1$ via the Bruhat-Tits building


Abstract in English

We apply the theory of fundamental strata of Bremer and Sage to find cohomologically rigid $G$-connections on the projective line, generalising the work of Frenkel and Gross. In this theory, one studies the leading term of a formal connection with respect to the Moy-Prasad filtration associated to a point in the Bruhat-Tits building. If the leading term is regular semisimple with centraliser a (not necessarily split) maximal torus $S$, then we have an $S$-toral connection. In this language, the irregular singularity of the Frenkel-Gross connection gives rise to the homogenous toral connection of minimal slope associated to the Coxeter torus $mathcal{C}$. In the present paper, we consider connections on $mathbb{G}_m$ which have an irregular homogeneous $mathcal{C}$-toral singularity at zero of slope $i/h$, where $h$ is the Coxeter number and $i$ is a positive integer coprime to $h$, and a regular singularity at infinity with unipotent monodromy. Our main result is the characterisation of all such connections which are rigid.

Download