Do you want to publish a course? Click here

Camera design and performance of the prototype Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

109   0   0.0 ( 0 )
 Added by Leslie Taylor
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Schwarzschild-Couder Telescope (SCT) is a candidate technology for a medium-sized telescope within the Cherenkov Telescope Array, the next generation ground based observatory for very high energy gamma ray astronomy. The SCT uses a novel two-mirror design and is expected to yield improvements in field of view and image resolution compared to traditional Cherenkov telescopes based on single-mirror-dish optics. To match the improved optical resolution, challenging requirements of high channel count and density at low power consumption must be overcome by the camera. The prototype camera, currently commissioned and tested on the prototype SCT, has been developed based on millimeter scale SiPM pixels and a custom high density digitizer ASIC, TARGET, to provide 1600 pixels spanning a 2.7 degree field of view while being able to sample nanosecond photon pulses. It is mechanically designed to allow for an upgrade to 11,328 pixels covering a field of view of 8 degrees and demonstrating the full potential of the technology. The camera was installed on the telescope in 2018. We will present its design and performance including first light data.



rate research

Read More

The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-Sized Telescopes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is currently partially instrumented with 1600 pixels covering a field of view of 2.7 degrees square. The small plate scale of the optical system allows densely packed silicon photomultipliers to be used, which combined with high-density trigger and waveform readout electronics enable the high-resolution camera. The cameras electronics are capable of imaging air shower development at a rate of one billion samples per second. We describe the commissioning and performance of the pSCT camera, including trigger and waveform readout performance, calibration, and absolute GPS time stamping. We also present the upgrade to the camera, which is currently underway. The upgrade will fully populate the focal plane, increasing the field of view to 8 degree diameter, and lower the front-end electronics noise, enabling a lower trigger threshold and improved reconstruction and background rejection.
We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.
The Cherenkov Telescope Array (CTA), with more than 100 telescopes, will be the largest ever ground-based gamma-ray observatory and is expected to greatly improve on both gamma-ray detection sensitivity and energy coverage compared to current-generation detectors. The 9.7-m Schwarzschild-Couder telescope (SCT) is one of the two candidates for the medium size telescope (MST) design for CTA. The novel aplanatic dual-mirror SCT design offers a wide field-of-view with a compact plate scale, allowing for a large number of camera pixels that improves the angular resolution and reduce the night sky background noise per pixel compared to the traditional single-mirror Davies-Cotton (DC) design of ground-based gamma-ray telescopes. The production, installation, and the alignment of the segmented aspherical mirrors are the main challenges for the realization of the SCT optical system. In this contribution, we report on the commissioning status, the alignment procedures, and initial alignment results during the initial commissioning phase of the optical system of the prototype SCT.
The Cherenkov Telescope Array (CTA) is an international next-generation ground-based gamma-ray observatory. CTA will be implemented as southern and northern hemisphere arrays of tens of small, medium and large-sized imaging Cherenkov telescopes with the goal of improving the sensitivity over the current-generation experiments by an order of magnitude. CTA will provide energy coverage from ~20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium size (9.5m) telescopes will feature a novel aplanatic two-mirror optical design capable of accommodating a wide field-of-view with significantly improved angular resolution as compared to the traditional Davies-Cotton optical design. A full-scale prototype SC medium size telescope structure has been designed and will be constructed at the Fred Lawrence Whipple Observatory in southern Arizona during the fall of 2015. concentrate on the novel features of the design.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا