Do you want to publish a course? Click here

Demonstration of ThGEM-Multiwire Hybrid Charge Readout for Directional Dark Matter Searches

80   0   0.0 ( 0 )
 Added by Anthony Ezeribe
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensitivities of current directional dark matter search detectors using gas time projection chambers are now constrained by target mass. A ton-scale gas TPC detector will require large charge readout areas. We present a first demonstration of a novel ThGEM-Multiwire hybrid charge readout technology which combines the robust nature and high gas gain of Thick Gaseous Electron Multipliers with lower capacitive noise of a one-plane multiwire charge readout in SF$_6$ target gas. Measurements performed with this hybrid detector show an ion drift velocity of $139~pm~12~text{ms}^{-1}$ in a reduced drift field $text{E/N}$ of $93~text{Td}~(10^{-17}~text{V cm}^{2})$ at a gas gain of $2470pm160$ in 20 Torr of pure SF$_text{6}$ target gas.



rate research

Read More

More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.
The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two $^{210}$Pb sources producing $sim$130 beta decays/hr. In $sim$800 live hours, no events leaked into the 8--115 keV signal region, giving upper limit leakage fraction $1.7 times 10^{-5}$ at 90% C.L., corresponding to $< 0.6$ surface event background in the future 200-kg SuperCDMS SNOLAB experiment.
162 - R. Bernabei 2009
A variety of detectors has been proposed for dark matter direct detection, but most of them -- by the fact -- are still at R&D stage. In many cases, it is claimed that the lack of an adequate detectors radio-purity might be compensated through heavy uses of MonteCarlo simulations, subtractions and handlings of the measured counting rates, in order to claim higher sensitivity (just for a particular scenario). The relevance of a correct evaluation of systematic effects in the use of MonteCarlo simulations at very low energy (which has always been safely discouraged in the field so far) and of multiple subtractions and handling procedures applied to the measured counting rate is shortly addressed here at some extent. Many other aspects would also deserve suitably deep investigations.
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
442 - M. Gai , D.N. McKinsey , K. Ni 2007
The Yale-Weizmann collaboration aims to develop a low-radioactivity (low-background) cryogenic noble liquid detector for Dark-Matter (DM) search in measurements to be performed deep underground as for example carried out by the XENON collaboration. A major issue is the background induced by natural radioactivity of present-detector components including the Photo Multiplier Tubes (PMT) made from glass with large U-Th content. We propose to use advanced Thick Gaseous Electron Multipliers (THGEM) recently developed at the Weizmann Institute of Science (WIS). These hole-multipliers will measure in a two-phase (liquid/gas) Xe detector electrons extracted into the gas phase from both ionization in the liquid as well as scintillation-induced photoelectrons from a CsI photocathode immersed in LXe. We report on initial tests (in gas) of THGEM made out of Cirlex (Kapton) which is well known to have low Ra-Th content instead of the usual G10 material with high Ra-Th content.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا