In this paper we study some aspects of integrable magnetic systems on the two-torus. On the one hand, we construct the first non-trivial examples with the property that all magnetic geodesics with unit speed are closed. On the other hand, we show that those integrable magnetic systems admitting a global surface of section satisfy a sharp systolic inequality.
We completely integrate the magnetic geodesic flow on a flat two-torus with the magnetic field $F = cos (x) dx wedge dy$ and describe all contractible periodic magnetic geodesics. It is shown that there are no such geodesics for energy $E geq 1/2$, for $E< 1/2$ simple periodic magnetic geodesics form two $S^1$-families for which the (fixed energy) action functional is positive and therefore there are no periodic magnetic geodesics for which the action functional is negative.
The problem of the existence of an additional (independent on the energy) first integral, of a geodesic (or magnetic geodesic) flow, which is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.
In this paper we study rigidity aspects of Zoll magnetic systems on closed surfaces. We characterize magnetic systems on surfaces of positive genus given by constant curvature metrics and constant magnetic functions as the only magnetic systems such that the associated Hamiltonian flow is Zoll, i.e. every orbit is closed, on every energy level. We also prove the persistence of possibly degenerate closed geodesics under magnetic perturbations in different instances.
In the present paper we prove, that if the geodesic flow of a metric G on the torus T is quadratically integrable, then the torus T isometrically covers a torus with a Liouville metric on it, and describe the set of quadratically integrable geodesic flows on the Klein bottle.
We extend the definition of the pentagram map from 2D to higher dimensions and describe its integrability properties for both closed and twisted polygons by presenting its Lax form. The corresponding continuous limit of the pentagram map in dimension $d$ is shown to be the $(2,d+1)$-flow of the KdV hierarchy, generalizing the Boussinesq equation in 2D.