No Arabic abstract
The muon collider represents one of the most promising solutions for a future machine exploring the high energy frontier, but several challenges due to the 2.2 $mu$sec muon lifetime at rest have to be carefully considered. The LEMMA project is investigating the possibility of producing low emittance muon/antimuon pairs from the e$^+$e$^-$ annihilation process at threshold energy, resulting in small transverse emittance beams without any additional beam cooling. However most of the measurements available are performed at higher $sqrt{s}$ values. It is therefore necessary to measure muons production in positron annihilation at threshold energy and compare the experimental results with the predictions in this specific energy regime. Apart from being a topic of physical interest by itself, these near to threshold measurements can have a sizeable impact on the estimation of the ultimate luminosity achievable in a muon collider with the LEMMA injection scheme.
Process of muon (pion) pair production with small invariant mass in the electron-positron high-energy annihilation, accompanied by emission of hard photon at large angles, is considered. We find that the Dell-Yan picture for differential cross section is valid in the charge-even experimental set-up. Radiative corrections both for electron block and for final state block are taken into account.
Using a sample of $1.31times 10^9$ $J/psi$ events collected with the BESIII detector, we report the first observation of spin polarization of $Lambda$ and $barLambda$ hyperons from the coherent production in the $J/psitoLambdabarLambda$ decay. We measure the phase between the hadronic form factors to be $DeltaPhi=(42.4pm0.6pm0.5)^circ$. The decay parameters for $Lambdato ppi^-$ ($alpha_-$), $barLambdatobar ppi^+$ ($alpha_+$) and $barLambdatobar npi^0$ ($baralpha_0$) are measured to be $alpha_-=0.750pm0.009pm0.004$, $alpha_+=-0.758pm0.010pm0.007$ and $baralpha_0=-0.692pm0.016pm0.006$, respectively. The obtained value of $alpha_-$ is higher by $(17pm 3)%$ than the current world average. In addition, the $CP$ asymmetry of $-0.006pm0.012pm0.007$ is extracted with substantially improved precision. The ratio $bar{alpha}_0/alpha_{+} = 0.913pm 0.028 pm 0.012$ is also measured.
The DsTau project proposes to study tau-neutrino production in high-energy proton interactions. The outcome of this experiment are prerequisite for measuring the $ u_tau$ charged-current cross section that has never been well measured. Precisely measuring the cross section would enable testing of lepton universality in $ u_tau$ scattering and it also has practical implications for neutrino oscillation experiments and high-energy astrophysical $ u_tau$ observations. $D_s$ mesons, the source of tau neutrinos, following high-energy proton interactions will be studied by a novel approach to detect the double-kink topology of the decays $D_s rightarrow tau u_tau$ and $taurightarrow u_tau X$. Directly measuring $D_srightarrow tau$ decays will provide an inclusive measurement of the $D_s$ production rate and decay branching ratio to $tau$. The momentum reconstruction of $D_s$ will be performed by combining topological variables. This project aims to detect 1,000 $D_s rightarrow tau$ decays in $2.3 times 10^8$ proton interactions in tungsten target to study the differential production cross section of $D_s$ mesons. To achieve this, state-of-the-art emulsion detectors with a nanometric-precision readout will be used. The data generated by this project will enable the $ u_tau$ cross section from DONUT to be re-evaluated, and this should significantly reduce the total systematic uncertainty. Furthermore, these results will provide essential data for future $ u_tau$ experiments such as the $ u_tau$ program in the SHiP project at CERN. In addition, the analysis of $2.3 times 10^8$ proton interactions, combined with the expected high yield of $10^5$ charmed decays as by-products, will enable the extraction of additional physical quantities.
We demonstrated for the first time the production of highly polarized short-pulse positrons with a finite energy spread in accordance with a new scheme that consists of two-quantum processes, such as inverse Compton scatterings and electron-positron pair creations. Using a circularly polarized laser beam of 532 nm scattered off a high-quality electron beam with the energy of 1.28 GeV, we obtained polarized positrons with an intensity of 10^4 e+/bunch. Magnitude of positron polarizations was determined as 73+-15(sta) +-19(sys)% by means of a newly designed positron polarimeter.
The total cross section of the reaction pp->ppK+K- has been measured at excess energies Q=10 MeV and 28 MeV with the magnetic spectrometer COSY-11. The new data show a significant enhancement of the total cross section compared to pure phase space expectations or calculations within a one boson exchange model. In addition, we present invariant mass spectra of two particle subsystems. While the K+K- system is rather constant for different invariant masses, there is an enhancement in the pK- system towards lower masses which could at least be partially connected to the influence of the Lambda(1405) resonance.